APPENDIX C

COLECOVISION
SOUND USERS°® MANUAL

L
-

Version 1.1 C(‘:;F{Etg\?g

£
May 3,1982 DO M\)T CU: Y

COLECOVISION SOUND USERS' MANUAL

13
13
13
14
15
1¢
17
i8
19
20
21

22
22
24
235

figure

O VNS N e

2% CONTENTS =wne

EUMMARY OF FEATURES

CENERAL DESCRIPTION

Song data areas, BxDATA: RAM mip mode of sound chip operation
Note list storage and note headers

LST_OF_SND_ADDRS and PTR_TO_LST_OF_SND_ADDRS
Hietarchy of song data areas: truncation, priority, overwriting
The four basic routines, briafly

NOTES .
Terminology

Frequency sweeps and note duratien
Attenuation sweeps

Rests

Type 0: fized frequency, fizxed attenuation
Type 1: swept frequency, fizxed attenuation
Type 2: fizxed frequency, swept attenuation
Type 3: swept frequency, swept attenuation
Noise notes: special case Type 2 notes

OPERATING SYSTEM ROUTINES
INIT_SOUND
ALL_OFF

JUKE_BOX
SND_MANAGER
PLAY_SONGS
FREQ_SWEEP
ATN_SWEEP
PROCESS_DATA_AREA
LOAD_NEXT_NOTE
UTILITIES

SPECIAL SOUND EFFECTS

Sound effects as notes within a song ("note effects™
A sound effect as a single sound

Pseudo code listing of main routines

SxDATA
Note Header

" LST_OF_SND_ADDRS

Rests and Type 0: fized frequency, fized attenuation
Type 1: swept frequency, fizxed attenuation

Type 2: fixed frequency, swept attenuation

Type 3: swept frequency, swept attenuation

Noise notes: special case Type 2 notes

Dedicated cartridge RAM locations

COLECOVISION SOUND USERS' MANUAL page

The Colecovision operating system includes routines which allow the cartridge
programmer to store "songs' and simple sound effects in tabular form in

cartridge ROM, and play them on request during the game. More complex, special
sound effects can also be created and played within the same data structure and
procedural format. This Sound Users' Manual describes the data structures
expected by and the use of the cperating system sound routines.

SUMMARY OF FEATURES

® six song note types: combinations of fized or variable frequency and
attenuation, "noise" (percussion) notes, and rests

* hierarchical structure of local data areas assigned to each sound channel,
which allows the temporary "overwriting" of lower priority songs (i.e., lower
priority songs are not truncated by higher priority songs or sound effects that
use the same channel, but continue unheard until the higher priority songs
finish)

® the ability to easily include a special sound effect (say, a cymbal crash)
as part of a song composed primarily of musical tones

® both songs and special, independent sound effects (e.g., an explosion sound)
can utilize the same data structures and output procedures

® sweep routines, which automatically create frequency or attenuation sweeps,
simplify note data storage and can be used by special sound effects

* song end codes allow songs to be played once, or automatically restarted
upon completion (repeat forever)

1

COLECOVISION BOUND USERS' MANUAL page
GENERAL DESCRIPTION
® Song data areas, BxDATA: RAM map mode of sound chip operation

The Colecovision operating system provides sound routines which output
frequency, attenuation, and control data to the TI 76489 sound chip. Data to

be sent to a particular sound generator channel is expected to be stored within

a ten byte block of CPU RAM called’a “song data area”. A song data area, then,
contains a RAM record of the current values "playing” on a sound channel.

Each song data area can also contain timing and descriptive information which
allows for simple generation of musical notes. A "song" can be created by
storing in CART ROM a list of note parameters which specify note duration,
frequency, and attenuation. When a song is started, O/S routines are provided
to load the data describing the first note of the song into a song data area.
Each song data area is then processed at regular intervals by routines which
modify and output the area's data to the sound chip. When a note is completed,
the next note in the song is automatically loaded and the process continues.

0/S routines also exist which facilitate the creation of "“special effects':
sound routines written by the cartridge programmer which algorithmically
generate data to be sent to the sound chip (as ocpposed to the table look-up,
song approach).

RAM space for at least four song dats areas must be reserved by the cartridge
programmer: one each to describe the current status of the four sound chip
channels. More than four song data areas will be required if the ability te
"overwrite' lower priority songs is desired, and some songs may share the same
data area (see the following discussion, "Hierarchy of song data areas:

priority, truncation, overwriting"). The first byte in each song data area,
byte 0 (its offset from the beginning of the data block = 0), contains the
channe! number upon which the song is to be played (0. noise generater, i to 3:
tone generator) and the song's identification number (SONGNO: 1 to 61). A song
data area is referred to throughout the rest of this manual as "SxDATAY, where
z = the song's SONCNO. For a detailed Gescription of each byte in a song data
area, see the following discussion, "NOTES", and refer to Figure 1.

® Note list storage and note headers

A note list is a sequential list of frequency and timer data stored in

cartridge ROM that, when processed and output to the sound chip, create the
notes that comprise a song. Each block of 1 to 8 bytes of data that describes
2 note in the list must begin with a one byte header which contains information
(bit flags or wvalues) that indicate (see Figure 2):

1) The number of the channe! upon which to play the note
2) The note type (one of § combinations of fixed or swept
frequency and attenuation, plus a rest).

The single byte header can also be used as an end-of-song marker, a repeat-song
indicator, or an indicator that a “"note" is to be determined algorithmically by

a special sound effect routine (the starting address of which immediately
follows) .

A 16 bit pointer to the location of the header of the next note to be played
(NEXT_NOTE_PTR) is maintained by the O/S routine SND_MANACGER in each song's
Gata area (SzDATA, offsets 1 and 2).

2

COLECOVISION SOUND USERS' MANUAL Page 3
) TTee—

* LST_OF_SND_ADDRS and PTR_TO_LST_OF_SND_ADDRS

The D/S routines expect the ten byte long song data areas to be stored

contiguously in CPU RAM, starting with the dats area used by seng number one.

The beginning addresses of each of these data areas, as well as the addresses

of the headers of the first note in each song, are stored in a ROM table calles
LET_OF_SND_ADDRS (see Figure 3): The cartridge programmer may place this taple
wherever desired in ROM. The 0/5 routines know its starting address through a
dedicated CPU RAM location, PTR_TO_LST_OF_SND_ADDRS, which must be loaded with
the 16 bit address of the table by the cartridge program before calling any 0/S
routines which use it (see description of INIT_SOUND).

® Hierarchy of song data areas: truncation, priority, overwriting

The routine that does the processing of the note data stored in the song data
areas, SND_MANAGER, and the routine that -outputs the modified data to the sound
chip, PLAY_SONCS, are designed to be called by the cartridge program every -
Video Display Processor (VDP) interrupt (every 16.7 ms). Starting with the

data area for song number one, SND_MANAGER processes the appropriate timer and
sweep counters and modifies the frequency and attenuation data accordingly. 1f
the data area is assigned to a special effect, SND_MANAGER calls that effect.
When a note is finished, SND_MANAGER, using the data area's next note pointer,
moves data for the next note of the song into the area. o9

After the operations upon a data area have been performed, the sound chip
channel number (CH#) stored in byte 0 of that data area is consulted and the
appropriate *channel data area pointer" (PTR_TO_S_ON_x) is set to point to the
beginning of the data area just processed (four of these pointers exzist at
dedicated 16 bit locations in CPU RAM, one for each of the sound generator
channels). The following data areas are then processed in the same fashion, in
order of occurence, until the end of data area code, 00, is reached. 1If a data
area is inactive, i.e., if the song(s) that use it aren't playing at the

moment, SND_MANAGER simply passes it over, doing no processing or channe! data
area pointer modification.

PLAY_SONCS, usually called immediately prior to SND_MANAGER, outputs data to
the sound chip from the four song data areas pointed to by the channel data
area pointers. Thus, a channel output priority is established on the basis of
ordinal position within the data area block: the last data area processed that
uses a given channel is the one that will be played on that channel. E.g.,

order of data area
within data block

containing all songs that use this data area:
song data areas SONCNO/CH® song is to be played on
ist 1/CH#x (remember: although other songs may use

this dats areaz also , song 1 MUST use it)

Sth é/CH#2
. 6th 3/CHe2

7th ’ 11/CH&2

10th 2/CH&3, 4/CH®3; 7/CHe3

COLECOVISION SOUND USERS' MANUAL page

First, consider channe! 2. Let's say that the only songs which use channel 2
are assigned three contiguous song data areas, Sth through 7th (grouping songs
which use the same channel isn't necessary as far as the code is concerned, but
it makes it simpler to think about). END_MANACER, as it makes its way through
the song data areas in order, will process the Sth data area (which “belongs"

to song é) and set PTR_TO_S_ON_2 to the address of byte 0 in the Sth data area.
Then, the éth area will be processed, resulting in resetting PTR_TO_S_ON_2 to
the 6th data area (song number 3). * Likewise, the 7th data area will be
processed, finally leaving PTR_TO_S_ON_2 pointing to the 7th dats area (song
nunmber 11). The next time PLAY_SONGS is called, it will send to sound chip
channel 2 frequency and attenuation data in the data area peinted to by
FTR_TO_S_ON_2, namely, the data for song number 11%.

Note that although only song 11 will be heard on channel 2 this pass through
PLAY_SONCS, the timers and data for songs 6 and 3 were nonetheless modified,
regardless of the existence of the higher priority song 11. That is, all songs
"keep going", whether or not their data will be output during PLAY_SONCS.
Songs é and 3 are said to have been “overwritten" by song 11. Should song 11 .
become inactive (end) before song é and/or song 3, then the highest priority of
the remaining active songs (i.e., the last data area within the block of data
areas to use a given channel) will be heard.

Thus, assigning several data areas to songs which use the same channe! allows
the creation of "background"” songs which can be momentarily interrupted
(overwritten) by a higher priority song or sound effect (e.g., an explosion, or
2 bonus song) and continue on after the overwriting song is over.

Now examine the 10th song data area. Again, let's say that the only songs that
use channel 3 are shown here and that they all share the 10th data area. In
this case, the programmer may have arranged things such that songs 2, 4, and 7
are never active simultaneously: i.e., there was no reason to assign three
different data areas for songs which never overlap. 1If, however, this is not
the case and, say, song 4 may be started before song 7 is finished, the 0/S
routines would stop song 7 in favor of song 4. That is, for songs that share
the same data area, the most recent song started is the song heard, and
interrupted songs do not continue: i.e., songs sharing the same data area
truncate each other. In many cases this may be both acceptable and desirable,
as it saves RAM space.

NOTE: The preceeding description states that a channe! data area pointer is
upcated every time SND_MANAGER processes a song data area: this is actually net
the case. To save processing time, a routine which updates all the pointers is
called only when, after loading the next note in a song, SND_MANAGER detects
that the data area's CH& or SONCNO has changed. This happens whenever the next
note: 1) uses a different channe! (see "Noise notes: special case Type 2

notes), 2) is a special effect note, or 2) is an end-of-song indicator. 1t is

only necessary to update the channe! data area pointers in these cases, and

when a new song is started (in JUXE_BOX). See "Pseudo code versions of main
toutines".

* The four basic routines, briefly
The following four O/S routines are the only ones that need be called to create

songs which use the six standard note types (more complete descriptions of each
routine can be found in the "OPERATING SYSTEM ROUTINES" section):

¢

COLECOVISION SOUND USERS' MANUAL page §

INIT_SOUND: This routine should be called immediately after power on, before
any sound processing can eccur. It turns off the sound generators, jnitializes
the CART RAM locations to be used 4§ song data areas, sets up the four channel
Gata ares pointers, and initializes PTR_TO_LST_OF_SND_ADDRS.

INPUT: n
TYPE: 8 bit constant
PASSED: in B . .

DESCRIPTION: number of song dats areas used by the game

INPUT: LST_OF_SND_ADDRS

TYPE: 16 bit address

PASSED: in HL

DESCRIPTION: 1LST_OF_SND_ADDRS is the base address of a list of the starting
addresses of each song's data area and note list.

OUTFUT: 1) turns off all sound generators -
2) initializes PTR_TO_LST_OF_SND_ADDRS
3) writes the inactive ecode (OFFH) to byte 0 of the n song data areas ~
49) stores 00 at end of song data areas
S) sets the 4 channel song pointers to a durmy inactive area
€) sets SAVE_CTRL to OFFH (see “Noise notes" discussign)

/JUKE_BOX: JUKE_BOX is called to start a song. Using a song number passed in B,
JUKE_BOX loads the data for the song's first note into the appropriate song

data area, thereby truncating whatever song had been "playing" in that data

area. (The address of the appropriate area is found by using the song number

4s an index into the LST_OF_SND_ADDRS table). It also formats the data area's
header and sets up the next note pointer. 1If the song is a special sound

effect, its next note pointer is set to the address of the special effect

routine. The next time PLAY_SONCS is called, that song's first note will be
played.

It JUKE_BOX is called with a song nuxber of a song already in progress, it
returns immediately (i.e., it doesn't restart the song).

INPUT: song number toc be started
TYPE: 8 bit constant, § to &1
PASSED: in B

CALLS: PT_IX_TO_SzDATA, LOAD_NEXT_NOTE_PTR, UP_CH_DATA_PTRS

OUTPUT: 1) moves the song's first note data to the appropriate song data area

1) formats byte 0 header of the song's data area ’

2) points next note pointer in data area (bytes 182) to address of

first note in song, or address of special sound effect routine

END_MANACER: SND_MANAGER should be called every VDP interrupt (every 16.7 ms).
For each data area, SND_MANACER processes the appropriste timer and sweep
counters and modifies the frequency and attenuation data accordingly. If the
data area is assigned to a special effect, SND_MANACER calls that effect.
Vhen & note is finished, SND_MANACER, using the data area's next note pointer,
moves data for the next note of the song into the area. If SND_MANAGCER reads a
header byte (in CART ROM) that has bits 3£4 set, indicating repeat song, it
will start the song again by reloading the first note in the song.

After the operations upon a data area have been performed, if necessary, the
channel data area pointers (PTR_TO_S_ON_x) are updated. The following data
areas are processed in the same fashion, in order of occurence, until the end
of data area code, 00, is reached.

COLECOVISION SOUND USERS' MANUAL page ¢

SND_MANACGER does not output the modified frequency and attenuation data.
PLAY_SONGCS is called just before SND_MANAGER to do this.

Epecial codes in_ byte 0 of the song data area indicate:

25S: data area inactive, do no processing
62: a special effect is to be played; SND_MANAGER calls the effect routine
0. end of song data areas (SEND_MANAGER processes data areas until it sees
G in byte 0)

NOTE: Song number 1 MUST use the first area in the block of song data areas.

INPUT: none

L 3

CALLS: PT_IX_TO_SxDATA, PROCESS_DATA_AREA

OUTPUT: Calls routines which: .

1) decrement song duration and sweep timers

2) modify swept frequency and attenuation values

3) call special effects routines where necessary

© update the channel data arez pointers if necessary

S) restart the song if indicated .
PLAY_SONCS: PLAY_SONGCS takes the frequency and attenuation data pointed te by
the four channel data area pointers (PTR_TO_S_ON_gx) and outputs it to the four
sound chip generators.

" INPUT: none
CALLS: TONE_OUT, UPATNCTRL

OUTPUT:

1) current freq and atn data is output to each tone generator, if
song/effect on that channel is active; if song on that channel is
inactive, that generator is turned off

2) noise generator is sent current atn data, and control data, if new

3) modifies SAVE_CTRL if necessary ’

These four routines would normally be called as follows:

power on inits done by 0/S

cartridge program receives control:

LD B, # of song data areas used in the game

LD HL, address where LST_OF_SND_ADDRS is stored in ROM
CALL INIT_SOUND to initialize song data areas

whatever other power on inits you want to do

start game:

1D B, # of song you want to start
CALL JUKE_BOX to set up for start of song

VDP interrupt occurs:

CALL PLAY_SONCS to output data

CALL SND_MANACER to process song data

whatever else you want to do during VDP interrupts
RETN to game

COL!:COVISIDN_SOUND USERS*' MANUAL page
NOTES
t Terminology

Each note in a song has an associated 10 bit frequency (except for noise notes)
and 4 bit attenuation which is output to the sound chip every time PLAY_SONCS
is called. The initial frequency and attenuation values (stored in 2 bytes)

are part of a block of 4 to 8 bytes that describe a single note within a song's
ROM note list. The remaining bytes are used to indicate sound channel, note
type, duration, and various timers and values associated with swept notes.

The following are explanations of names and symbols used throughout this manual
to refer to bytes, or segments of bytes, within both a note's ROM note list and
a RAM song datas area (see Figure 1):

i: 1 is a symbol used to graphically uptrite bits or nibbles within a byte

Bx: means bit x of a byte, bit 7 being the most significant bit

byte x: refers to the cffset of a byte within a data block, byte O being the
first byte in the block

MSEN, LSEN: MSN means the most significant nibble of a byte, LSN is the least
significant nibble

CH#: the sound channel upon which a note is to be played; 0 = noise generator,
1 to 3 = the 3 tone generators

SOI;XGNO: the song number of the song playing in a song data area; 1 to 61;
SONCNO 62 means a special sound effect is using the data area

NEXT_NOTE_PTR: 2 byte address of the ROM location of the data block for the
next note to be played in a song

FO - F9: the 10 bit frequency data to be sent to a sound chip tone generator;
FO is the most significant bit; see data sheets, TI 76489

ATN: 4 bit attenuation data to be sent to any of the four sound generators

CTRL: 3 bit control data for sound chip noise genrator; FB NF0 NF! (called
SHIFT in this manual); see data sheets for details

NLEN: 1 byte that directly or indirectly determines the duration of a note

FPS: 4 bit frequency prescaler, used with NLEN to determine the length of a
frequency sweep

FPSV: 4 bit temporary storage location for FPS; this variable gets decremented
every VDP {nterrupt, and is relcaded from FPS

FSTEP: the size of a step in a frequency sweep, an 8 bit two's complement
signed value that is added to the current 10 bit frequency at a rate determined
by NLEN and FPS; 1 to 12?7, -1 to -128

ALEN: 4 bit number of steps in an attenuation sweep

COLECOVISION SOUND USERS:® MANUAL Page

ASTEPS: ASTEPS is the signed, 4 bit size of a step in an attenuation sweep;
can take values 1 to 7, -1 to -8 (MSE = 1 means negative)

APS: 4 bit attenuation prescaler, used with ALEN to determine the length of a
frequency sweep

APSV. 4 bpit temporary storage location for APS; this variable gets decremented
every VDP interrupt, and is reloaded from APS

® Frequency sweeps and note duration

The time duration of & note = the number of passes by PLAY_SONGS through the
note times 1é.7ms (the VDP interrupt period). (note that the time the note is
HEARD could be shorter: see "Attenuation sweeps" discussion) The number of
PLAY_SONCS passes is always determined directly or indirectly by NLEN. NLEN,
however, has two meanings, depending upon whether or not a note's frequency is
swept:

Fized frequency notes - In this case, NLEN is decremented every VDP interrupt
and therefore directly determines the length of a note:

duration = NLEN ® 1§.7ms .

NLEN should have values in the range 0 to 255 (0 =) 256, giving a marximum
duration of * 4.25 seconds.

Swept frequency notes - Here, the prescaler variable, FPSV, is decremented
until zero before NLEN is decremented. Once FPSV goes to sero, it's reloaded
from FPS; however, an initial value for FPSV, which enters into the calculation
of the the length of the first step in the sweep, is stored in ROM along with
the rest of the note's initial data, and it may be different from the reload
value, FPS. For a frequency swept note:

note duration = [((NLEN -1) = FPS) « initial FPSV] = 1¢ . 7ms

S0, NLEN again determines note duration, but in an indirect fashion (in concert
with FPS and the initial FPSV).

In the case of a frequency swept note, NLEN can be thought of as one of four
parameters that describe the sweep: 1) the starting frequency, 2) FSTEP, a
signed step size, i.e., a delta frequency that is periodically added te the
current frequency, 3) the prescaler value (FPS) which determines the length of
time at any one frequency step, and 4) NLEN, the number of steps in the sweep.

The duration of each step in the sweep is given by the following:
duration 1st step = initial FPSV % 1¢ . 7ms
duration all others = FPS * 14 .7ms

Frequency sweep parameter ranges:

FSTEP - signed B bit two's complement number: 1 to 127, -1 to -128; an FSTEP of
0 tells FREQ_SWEEP that the note is not frequency swept, and the note's
duration is determined by directly decrementing NLEN (prescaler is disregarded

FPS - 4 bit frequency prescaler, used with NLEN to determine the length of a
frequency sweep: 0 to 15 (0 =) 1&)

COLECOVISION SODUND USERS' MANUAL page

FPSV - 4 bit temporary storage location for FPS this variable gets
decremented every VDP interrupt, and is reloaded from FPS: 0 to 15 (0 =) 16

NLEN - 8 bit note duration for a fixed frequency note: 0 to 255 (0 =) 256)
8 bit number of steps for a swept frequency note: 2 to 255 (0 =254

Note durations:

Fixed frequency - _ NLEN » 1§.7ms

Swept frequency - [(NLEN =1) ® FPS) ¢ initial FPSV] ® 1¢.7ms
duration ist step = initial FPSV ® 1¢ . 7ms

duration all others = FPS % 14.7ms

®* Attenuation sweeps

Volume attacks and decays can be thought of as attenuation sweeps: a sweep from
low to higher volume is an attack, a sweep in the other direction is a decay.
Attenuation sweeps are created in a similiar fashion to the frequency sweeps
described above, the primary difference being that attenuation sweep parameters
don't take on 8 bit values. The full velume range for the attenuation

registers on the 7648% chip is 0 (ON) to 1S5 (OFF), so step sizes and number of
sweep steps greater than 4 bits aren't generally useful.

Just as in the case of a frequency swept note, attenuation sweeps have four
parameters that describe the sweep: 1) the starting attenuation, 2) ASTEP, a
signed step size, i.e., a delta attenuation that is periodically added to the
current attenuation, 3) the prescaler value (APS) which determines the length
of time at any one attenuation step, and € ALEN, the number of steps in the
sweep.

The prescaler parameters, APS and APSV, are the same size (4 bits) and mean
exactly the same thing as their frequency counterparts. ALEN, the number of
steps in the sweep, is only 4 bits (compared to an FLEN of 8 bits), but 1S
steps of even the smallest step size (+/-1) can sweep a generator from full on
to full off. ASTEP, in order to squeeze it into a nibble, has been limited to
& 4§ bit signed number (3 bits data, § bit sign). This gives a range of step
values from 1 to 7, =1 to -8. This shouldn't be too limiting, since most
attenuation sweeps are implemented with the smallest step size.

NOTE: Recall that, as far as SND_MANACER is concerned, the length of a note is
determined, directly or indirectly, only by NLEN, a timer/counter that is
decremented during FREQ_SWEEP; i.e., the duration of a note is independent of
what is happening to its attenuation. Therefore, the programmer should take
care to see that an attenuation sweep isn't inadvertently created that ramps

the volume down to off before SND_MANAGER, through NLEN, has decided that the
note is over. However, since ATN_SWEEP simply leaves the attenuvation alone
once it's finished a sweep, the independence of attenuation sweep length and
note length may be put to good use: e.g., a sforzando can be accomplished by
making an attenuation sweep (to a still audible volume) end before the rest of

the note.

ALEN, like NLEN for a frequency sweep, is the number of steps in an attenuation
sweep and can take on values from 0 to 15S. However, since a "step" consists of

3 tone (which may be frequency swept) played at a fizxed attenuation level, a

sweep of 1 step doesn't make sense. ALEN values, then, should range from 2 to
15. An ALEN value of 0 causes a sweep of sixteen steps (NOTE: ATN_SWEEP "wraps
around"” at 0 and 15, i.e., subtracting § from 0 results in 15, and adding 1 to

1S results in 0).

COLECOVISION SOUND USERS' MANUAL page 190
The duration of aln attenuation sweep can be calculated as follows:

duration entire sweep = [((ALEN =1) ®* APS) ¢ initial APSV] ® 16 .7ms
duration ist step = initial APSV % 14 .7ms
duration all others = APS * 14 .7ms

Attenuation sweep parameter ranges:

.

ALEN: 4 bit number of steps in an attenuation sweep, can take values from 2 to
15 (0 =) 16 steps).

ASTEP: ASTEP is the 4 bit signed (two's complement) size of a step in an
attenuation sweep; can take values from 1 to 7, =1 to -8.

APS: 4 bit attenuation prescaler, used with ALEN to determine the length of a
frequency sweep: 0 to 15 (0 =) 1&).

APSV: 4 bit temporary storage location for APS; this variable gets decremented
every VDF interrupt, and is relcaded from APS: 0 to 1S 0 =) 16

Descriptions of each of the sizx note types follow:
* Rests
See Figure §.

byte 0: BS set indicates a rest, to be played on CH# in B? - B¢
duration = (B4 - BO) * 14.7ms, can take values 1 to 31

® Type O0: Fixzed frequency, fized attenuation
See Figure 4.

byte 0: header, CH# in B? - B4, note type = 0 in B! - BO
byte {: least significant 8 bits of the 10 bit frequency data (constant)
byte 2: MEN = 4§ bit ATN data (constant throughout the note)

LSN = 0 0 FO F1, the top 2 bits of the frequency data (constant)
byte 3: NLEN, duration of the note = NLEN ® 16.7ms

* Type 1: Swept frequency, fixed attenuation
See Figure §.

byte 0: header, CH#® in B7 - B¢, note type = 1 in Bf - BOD
byte 1: least significant 8 bits of the initial 10 bit frequency data
byte 2: MEN = 4§ bit ATN data (constant throughout the note)
LSN = 0 0 FO F1, the top 2 bits of the initial frequency data
byte 3: . NLEN, number of steps in the frequency sweep, i to 255 (0 =) 256)
byte 4: FPS | FPSV, prescaler reload value and initial FPSV
byte §: FSTEP, sweep step size, 1 to 127, -1 to -128

* Type 2: Fixed frequency, swept attenuation
See Figure §.

byte 0: header, CH#® in B? - B¢, note type = 2 in B! - BO
byte 1§: least significant 8 bits of the 10 bit frequency data (constant)

COLECOVISION SOUND USERS' MANUAL page 11

byte 2: MEN = § bit ATN data (initial value)
LSN = 0 0 FO F1, the top 2 bits of the frequency data (constant)
byte 3: NLEN, duration of the note = NLEN * 14 7ms
byte 4. ALEN t ASTEP
ALEN = number of steps in the attenuation sweep
ASTEP = step size, § to 7, =1 to -8
byte S: APS ! APSV, prescaler reload value and initial APSV, 1 to 15 (0 =) 16)

.

®* Type 3: Swept frequency, swept attenuation
See Figure 7.

byte 0: header, CH# in B7 - B4, note type = 3 in Bl - BO
byte 1: least significant 8 bits of the initial 10 bit frequency data
byte 2: MEN = 4 bit ATN data (initial value)

LSN = 0 0 FO F!, the top 2 bits of the initial frequency data

byte 3: NLEN, number of steps in the frejuency sweep, 2 to 255 (0 =) 256)
byte 4: FPS | FPSV, prescaler reload value and initial FPSV, 0 - 15 (0 =) 16)
byte S: FSTEP, sweep step size, § to 127, -1 to -128

byte §: ALEN ! ASTEP

ALEN = number of steps in the attenuation sweep
ASTEP = step size, 1 to 7, -1 to -8 .
byte 7: APS | APSV, prescaler reload value and initial APSV, 1 to 15 (0 =) 16)

* Noise notes: special case Type 2 notes
See Figure 8.

Noise notes are notes that are played on the sound chip noise generator (CH#0).
They are stored in ROM as a special case of a Type 2 note, fixed frequency and
swept attenuation. They consist of white noise with superimposed attenuation
decay, which creates a percussive effect, such as a snare drum note.

Instead of frequency information, noise notes are stored with three bits of
noise control data: FBE NF0 NF! (see TI data sheets 74489), which remain
constant throughout the note. Experimentation with various values can result
in credible percussion effects.

NLEN, as is the case for a regular Type 2 note, directly determines the
duration of a noise note.

The sound chip noise generator is unlike the other generators in that sending

it redundant data (i.e., the same data that it has stored in its internal

registers) has an audible effect on its output. In particular, whenever

control data, redundant or not, is sent to the noise generator, its internal

shift register is reset, causing a short pop or eclick to be heard. This isn't
annoying on an occasional basis, or when a new noise starts, but remember:
PLAY_SONCS is sending data to all four channels every 16 .7ms. This would cause
a4 noticeable lack of "whiteness"” in the noise generator's output.

PLAY_SONCS avoids this problem by referencing a dedicated CART RAM location,
SAVE_CTRL (see Figure 9) each time before it sends control data to the noise
generator. SAVE_CTRL contains the control data that was output to the noise
generator the last time through PLAY_SONGCS. 1If the noise control data in the
pointed to song data area = SAVE_CTRL, PLAY_SONCS doesn't send it out again.
If there is new data to be sent, that data is output and SAVE_CTRL is updated.

COLECOVISION SOUND USERS' MANUAL page 12

byte
byte

byte
byte

byte

header, CH#0 in B? - B4, note type = 2 in Bl - BO

MEN = 4 bit ATN data (initial value)

LSN = 0 FB NF0 NF!, noise control data

NLEN, duration of note: NLEN * 1§.7ms

ALEN | ASTEP

ALEN = number of steps in the attenuation sweep

ASTEP = step size, 1 to 7, =1 to -8

APS | APSV, prescaler reload value and initial APSV, 1 to 15 (0 =) 16)

COLECOVISION EDOUND USERS' MANUAL page 123

OPERATINGC SYSTEM ROUTINES

INIT_SOUND

Contains ENTRY POINT: ALL_OfFfF

INIT_SOUND, usually called right after power on, turns off the sound
generators, initializes the CART RAM locations to be used as song data areas,
and sets up the four channel data area pointers. Specifically, it:

1) directly turns off all four sound generators.

2) initializes PTR_TO_LST_OF_SND_ADDRS, a dedicated 16 bit CPU RAM pointer
which other sound routines expect to contain the base address of a list in
CART ROM (called LST_OF_SND_ADDRS) of the starting addresses of each
song's data area and note list. The address of LST_OF_SND_ADDRS is passed
to INIT_SOUND in HL.

3) stores the sound-inactive code (OFFH) into byte 0 of n song data areas. n
is passed in B and = the total number of song data areas used by the game.

4) stores an end of data area code (00) following the last data area.

S) sets the four pointers to the data areas for the songs to be played on
each channel, PTR_TO_S_ON_x (x = 0-3), to a dummy inactive area (DUM_AREA,
which is actually a single OFFK byte within INIT_SOU).

é) sets SAVE_CTRL to an initial value of OFFH

INPUT: n

TYPE: & bit constant

PASSED: in B '

DESCRIPTION: number of song data area used by the game

INPUT: LST_OF_SND_ADDRS

TYPE: 16 bit address

PASSED: in HL

DESCRIPTION: LST_OF_SND_ADDRS is the base address of a list of the starting
addresses of each song's data area and note list.

OUTPUT: 1) turns off all sound generators
2) initializes PTR_TO_LST_OF_SND_ADDRS
3) writes inactive code to byte 0 of n song data areas
4) stores 00 at end of song data areas
S) sets the 4§ channel song pointers to the inactive DUM_AREA
é) sets SAVE_CTRL to OFFH

ALL_OFF

ALL_OFF directly turns off all four sound generators, but does nothing to any
song data areas or the § channel data pointers.

INPUT: none

OUTPUT: turns off all sound generators

COLECOVISION SOUND USERS' MANUAL page 14
JUKE_BOX

JUKE_BOX is called to start a song. Using a song number passed in B, JUKE_BOX
loads the data for the song's first note into the appropriate song data area

(the address of the area is found by using the song number as an index into the
LST_OF_SND_ADDRS table). It also formats the data area’'s header and sets up
the next note pointer. 1If the song.is a special sound effect, its next note
pointer is set to the address of the speciai effect routine. The next time
PLAY_SONCS is called, that song's first note will be processed (thereby
truncating whatever song had been “playing" in that data area), and the song

will have started.

Since starting a new song may have altered the priority structure within the
song data areas, JUKE_BOX also calls UP_CH_DATA_PTRS to modify the channel data
pointers accordingly.

If JUKE_BOX is called with a song number of a song already in progress, it
returns immediately (i.e., it doesn't restart the song).

INPUT: song number to be started
TYPE: & bit constant, 1 to 61
PASSED: in B

CALLS: PT_IX_TO_SxDATA, LOAD_NEXT_NOTE, UP_CH_DATA_PTRS

OUTPUT: 1) moves the song's first note data to the appropriate song data area
1) formats byte 0 header of the song's data area
2) points next note pointer in data area (bytes 182) to address of
first note in song, or address of special sound effect routine
3) updates the channel data pointers on basis of $ONg priorities

COLECOVISION SOUND USERS' MANUAL — pPage 13

SND_MANAGER

SND_MANACER should be called every VDP interrupt (every 16.7 ms). It assumes
that the song data areas are stored contiguously in a data block beginning with
_the dats area assigned to song number one. For each data area, END_MANACER, or
routines which it calls, processes the appropriate timer and sweep counters and
modifies the frequency and attenuation data accerdingly. 1If thg data area is
assigned to a special effect, SND_MANACGER simply calls that effect, and doesn't
modify any data. When a note is finished, END_MANACER, using the data area's
next note pointer, moves data for the next note of the song i{nto the area and
fills in keys bytes within the area to allow proper processing of the data area
by the sweep routines it calls (FREQ_SWEEP and ATN_SWEEP). (END_MANAGER
considers a note finished when its frequency duration timers have timed out; \
see the descriptions of the FREQ_SWEEP and ATN_SWEEP routines) A special
effect is responsible for deciding when its over and initiating the next note

in the song.

After the operations upon a data area have been performed, the channel data
area pointers (PTR_TO_S_ON_x) may be updated (see description of
UP_CH_DATA_PTRS in “UTILITIES" section).

It SND_MANACER reads a header byte (in CART ROM) that has bits 3&4 set,
indicating repeat song, it will start the song again by reloading the first

note in the song, using the SONGNO portion (B5-B0) of byte 0 in the song's data
and the LST_OF_SND_ADDRS to find it.

SND_MANAGER does not output the modified frequency and attenuation data.
PLAY_SONGCS is usually called just before END_MANAGER to do this.

Special codes in byte 0 of the song data area indicate:

OFFH = data area fnactive, do no processing, do not modify channel
data area pointer

BS-B0 = 62 - 3 special effect is to be played; SND_MANACGER calls the effect
routine

00H - end of song data areas (SND_MANACGER processes data areas until

it sees 0 in byte 0)

NOTE: Song number 1| MUST use the first data area in the block of song data
areas.

INPUT: none
CALLS: PROCESS_DATA_AREA, PT_IX_TO_SxDATA

OUTPUT: 1) decrements song duration and sweep timers
2) modifies swept frequency and attenuation values
©3) calls special effects routines where necessary
9 restarts the song if indicated
S) may update the channel data area pointers (PTR_TO_S_ON_x)

COLECOVISION SOUND USERS' MANUAL page 1¢

PLAYBSONCS

PLAY_SONCS takes the frequency and dttenuation data peinted to by the four
channel data area pointers (PTR_TO_S_ON_x) and outputs it to the four sound
chip generators. Action is taken on the basis of the each data area's byte 0:

1) If the pointed to data area is active, the frequency and attenuation data
are sent to the channe! indicated by B7-B¢ (CH#®) of byte & of the pointed
te data area.

2) 1f byte 0 is OFFH (inactive), the channel to which that pointer is
dedicated is sent the OFF attenuation code.

3) If CH® = 0 (noise), the attenuation data is output. If there is no new
noise control data to be output (determined by checking dedicated CART P\AH
location SAVE_CTRL), no control data is sent out. Otherwise, the new
control data is output and EAVE_CTRL is updated.

INPVUT: none

OUTPUT: through SOUND_PORT,
1) current freq and atn data is output to each tone generator, it
song/effect on that channel is active
2) noise generator is sent current atn data, and control data, if new
3) modifies SAVE_CTRL if necessary

COLECOVISION SOUND USERS' MANUAL page 17
FREG_SWEEP

FREQ_SWEEP is used by END_MANACER and special effects routines to create
frequency sweeps. It operates upon frequency data stored within & song data
area, and is normally called (by SND_MANACER or a special effect routine) once
every VDP interrupt (16.7ms). The start of the data area (address of byte 0)

is passed in IX. . . @

FREQ_SWEEP assumes data has been stored as follows (names which may be used to
describe the various bytes eor byte segments within the data area are indicated;
see Figure 1):

byte 3. the least significant 8 bits of that note's frequency (F2 - F%) \
byte 4. top 2 bits of that note's frequency: Bl = F0, B2 « Fi

byte S: NLEN - determines the note's duration:
1) if frequency is to be swept, NLEN = number of steps in the sweep:
2 to 255 (0 =) 2%¢)
2) if tixed frequency, NLEN ?* 14.7 ms = duration of the note:
1 to 255 (0 =) 256) .

byte & FPS | FPSV - frequency sweep duration prescaler:
FPS = prescaler reload value: 0 to 15 (0 =) 16
FPSV = temp storage nibble for FPS: init ROM value, 0 to 13 (0 =) 14)
duration of sweep (& note) = [((NLEN-1) % FPS) « initial FPSV] = 1¢ . 7ms
duration ist step = initial FPSV * 14 7ms
duration all other steps = FPS @ 16 .7ms

byte 7: FSTEP - frequency sweep step size: signed 8 bit number, two's
complement: { to 127, -1 to -128
it FSTEP = 00, frequency is not to be swept, but NLEN is decremented
each time called

Parameter limitations:

) In a frequency sweep, a "step” consists of a single fired frequency tone;
therefore, the minimum number of steps a frequency sweep can have is two
(otherwise the frequency wouldn't have "swept®).

2) If a note is to be frequency swept, FSTEP must not be 0.

3) The minimum length fixed frequency note has NLEN = .

4) Maximum NLEN 0, which is equivalent to 25¢.

FREQ_SWEEP returns with the Z flag SET if the note (swept or fized) is over,
RESET if the note is not over. (PROCESS_DATA_AREA decides that a note is over
when FREQ_SWEEP returns with the Z flag set)

INPUT: 16 bit address of a song data area in CPU RAM
PASSED: - in IX
DESCRIPTION: FREQ_SWEEP operates upon frequency data within this song data area

OUTPUT: 1) duration and sweep counters are decremented
2) freq data {n bytes 384 is modified if note is freq swept
3) returns with Z flag SET if note over, RESET if note not over

COLECOVISION SOUND USERS' MANUAL page 18
ATN_SWEEP

ATN_SWEEP is used to create attenuation sweeps. It operates upon attenuation
data stored within a song data area, and is normally called (by
PROCESS_DATA_AREA or a special effect routine) once every VDP interrupt
(16.7ms). The start of the data area (address of byte 0) is passed in IX.

.]
ATN_SWVEEP assumes data has been stored as follows (see Figure 1):
byte &2 ATN - the MSN = 4 bit attenuation

byte 8: ALEN | ASTEP - no-sweep code or sweep length and step size:
1) i6 byte 8 = 00, ATN is not to be swept and counters aren't chanyed
2) if byte 8 non gero, attenuation is to be swept:
a) ALEN = number of steps in the sweep: § to 15 (0 =) 16
b) ASTEP = sweep step size: § §o0 7, =1 to -8 (signed, 4 bit two's
complement)

byte 9: APS ! APSV - attenuation sweep duration prescaler:
1) if attenuation is not swept, byte 9 is not used by ATN_SWEEP
2) if attenuation is to be swept:
APS = prescaler reload value: 1 to 15 (0 =) 16 °
APSV = temp storage nibble for APS: init ROM value, 1 to 15 (0 =) 1&)
duration of swept attenuation part of note =
[((ALEN - 1) ® APS) ¢ initial APSV] * 16.7 ms
duration ist step = initial APSV * {£.7ms
duration all other steps = APS ® {§.7ms

Parameter limitations:

1) In an attenuation sweep, a “step" consists of a tone (swept or not) played
at a fixed attenuation level; so, the minimum number of steps an
attenuation sweep can have is two (otherwise the attenuation wouldn't have
“swept”). Therefore, the minimum ALEN value is 2 (0 =) 1&)

2) If a note is to be attenuation swept, byte & must not be 00.

3) The absolute value of ASTEP must be) = 1§.

1f byte 8 is 00, ATN_SWEEP returns immediately with 2 flag SET (the sweep is
over or the note was never swept), and doesn't modify any counters. When a
sweep finishes, ATN_SWEEP sets byte 8 to 00 and returns with the Z flag SET.

If a sweep is in progress, ATN_SWEEP returns with the Z flag RESET. (NOTE:
PROCESS_DATA_AREA decides that a note is over when FREQ_SWEEP returns with 2
set: the length of a note has nothing to do with when its attn sweep is over)

INPVUT: 16 bit address of a song data area in CPU RAM
PASSED: in IX
DESCRIPTION: ATN_SWEEP operates upon frequency data within this song data area

OUTPUT: 1) duration and sweep counters are decremented if sweep in progress
2) atn data in byte 4 is modified if note is atn swept
3) RETs €C SET, byte 8 = 0 if sweep is over or note was never swept
RETs C RESET if sweep in progress

COLECOVISION SOUND USERS' MANUAL page 19
PROCESS_DATA_AREA

PROCESS_DATA_AREA {s called by SND _MANACER. For an active data area (address
of byte 0 passed in IX), PROCESS_DATA _AREA modifies the timers, sweep counters,
frequency, and attenuation data by calling FREQ _SWEEP and ATN_SWEEP. If a note
finishes during the current pass through PROCESS_DATA_AREA, the next note in
the song is examined and its data ig loaded into the data ares (calls

LOAD_NEXT NOTD Then, in order to maintain the song data Wwrea priority
structure, the CH# ! SONCNO of the newly loaded note is compared to the

CH& ! SONCNO of the previous note: if there is a difference, UP_CH_DATA_PTRS is
called to adjust the channel data area pointers in response to the change

caused by loading the next note.

\
If the data area is being used by a special sound effect, PROCESS _DATA_AREA

calls the sound effect routine whose address is stored in bytes 182 of the data
area (the actual address called is routine ¢ 7: see discussion of special sound
effects).

If the data area is inactive, PROCESS_DATA_AREA returns immediately (no
processing occurs).

INPUT: address of byte 0 of a song data area
PASSED: in IX

CALLS: ATN_SWEEP, FREQ_SWEEP, LOAD_NEXT_NOTE, UP_CH_DATA_PTRS, AREA_SONGC_IS

OUTPUT: 1) if active, modifies song data area's timer, freq, and atn data
’ 2) loads the next note's data when a note is finished
3) if special sound effect routine using data area, calls it
4) when necessary, updates the channe!l data area peointers

COLECOVISION 80UND USERS' MANUAL page 20
LOAD_NEXT_NOTE

Called by PROCESS_DATA_AREA and JUKE_BOX, LOAD_NEXT_NOTE examines the nert note
to be played in a data area (address byte 0 passed in IX) and moves its data

_into the area. It fills in bytes (e.g., to indicate swept or not swept) where
appropriate, based upon note type. 1If the next "note" is a special sound

effect, its address is saved in bytes 182 and the address of the routine «+ 0 is

called, with the address of the note to follow the effect puud in HL and

EONCNO passed in A. This will cause the special effect routine to save both

these values. Then, the special effect routine + 7 is called, which allows the

routine to initialize the song data area for the first pass through PLAY_SONGCS.

(see discussion of special sound effects)
')

Prior to moving the next note data, LOAD_NEXT_NOTE saves the data area's byte 0
(CH&# | SONCONO) and stores the song inactive code (OFFH) there. The last thing
LOAD_NEXT_NOTE does is restore byte 0, loading CH# with the CH® ! SONGNO of the
new note (usually the same as the old note). If the new note is a special

sound effect, 62 is returned as the SONCNO part of byte 0.

INPUT: address of byte 0 of a song data area
PASSED: in IX .

OUTPUT: 1) sets up song data area with data from next note to be played

2) for next note = special sound effect, calls the effect twice, first
with the address of the following note in the song and the song's
EONGNO, and then once more to allow the effect to initialize the
song data area

3) if next note is "normal', loads CH® ! SONGCNO in byte 0 with
CH& | SONGCNO of new note

&) returns with byte 0 = OFFH if song over, SONCNO = 62 if next note is
& sound effect

COLECOVISION SOUND USERS®' MANUAL pPage 21
- \,

UTILITIES

The following are O/S otility routines, used by the main 0/S sound programs,
that may be of use to the cartridge programmer:

®2% AREA_SONGC_I§ nea

®
The address of byfe 0 of a song data area is passed in IX. The song number of
the song using that area is returned in A (OFFH if inactive). If a special
effect was using that area, €2 is returned in A and HL is returned with the
address of the special sound effect routine.

tt% UPATNCTRL ®ss \

Perform single byte update of the snd chip noise control register or any
attenuation register. IX is passed pointing to byte 0 of a song data area, MSN
register C = formatted channel attenuation code.

®t* UPFREQ w2wn

Perform double byte update of a sound chip frequency register. 1IX is passed
peinting to byteD of a song data area, MSN tegister D = formatted channel
frequency code.

RN DECLEN =22

Without affecting the MSN, decrement the LSN of the byte pointed to by HL. KL
remains the same.

RET with Z flag set if dec LSN results in 0, reset otherwise.

RET with C flag set if dec LSN results in -1, reset otherwise.

txx DECMSN naw
Without affecting the LEN, decrement the MSN of the byte pointed to by ML. HL
remains the same. .

RET with Z flag set if dec MSN results in 0, reset otherwise .

RET with C flag set if dec MSN results in -1, reset otherwise.

g% MSNTOLSN zae

Copy MSN of the byte pointed to by HL to the LSN of that byte. HL remains the
same.

®%% ADDEi¢ mam

Adds B bit two's complement signed value passed in A to the 16 bit location
pointed to by HL. Result is stored in the 16 bit Jocation.

** % PT_IX_TO_SxDATA =22

A SONCNO is passed in B. PT_IX_TO_SxDATA returns with IX pointing to the song
data area which is used by that SONGNO.

COLECOVISION SOUND USERS' MANUAL page 22
®2» UP_CH_DATA_PTRS 2%

UP_CH_DATA_PTRS adjusts each channel data pointer to point to the highest
priority (ordinal last) song data ares that uses that channel. It is ecalled
whenever a change has been made to a song data area that requires modification
of the channel data pointers.

All 4 channel data pointers (PTR_Tb_S_DN_:) are jnitially peimted to a2 dumny
inactive area, DUM_AREA. Then, moving in order from the first data area to the
last, CH® in byte 0 of each data arez is examined, and the corresponding
channe! data pointer is pointed to that data area. Thus, by the time the

routine is done, each channe!l data pointer is peinting to the last active data
area that contains data to be sent to that channel. If none of the active dat
areas used a particular channel, then that channel remains pointing te DUM_AREA
(and therefore its generator will be turned off next time through PLAY_SONCS).

tx* LEAVE_EFFECT %ew

LEAVE_EFFECT, called by a special sound effect routine when it's finished,
testores the SONGNO of the song to which the effect belongs to BS - B0 of byte
0 in the effect's data area, and loads bytes § &§ 2 with the address of the next
note in the song. The address of the 1 byte SONGNO (saved by the effect when
it was first called) is passed in DE. The 2 byte address of the next note in
the song, also saved by the effect, is passed in HL. IX is assumed to be
pointing to byte 0 of the data area to which the song number is to be restored.
Bits 7 & € of the saved SONGNO byte are not stored into byte 0, and therefore
may be used during the course of the effect to store any useful flag
information.

SPECIAL SOUND EFFECTS
* Sound effects as notes within a song

Sounds which do not fit one of the six categories of "normal" musical notes can
be created and played throughout the course of a song as "special effect"

notes. Unlike normal musical notes, which are stored in ROM as tables of
frequency/control and attenuation data, a special effect's data are determined
algelrithmically by a custom routine written by the cartridge programmer.

Special effect notes can also be used to generate sounds that could have been
comprised of many normal notes, but which are more efficiently (in terms of ROM
space used) computed by a short program.

These notes use the same song data ares as the song within which they are
contained, and they are stored in the song's ROM note list with a one byte
header as are normal! notes. However, the bytes following the ROM header do not
contain data to be directly loaded into the song data area. The header (see
Figure 2), which specifies the channe! upon which te play the effect (which is
usually the same as the channe!l used by the rest of the notes in the song), is
followed by a two byte address of a routine written by the cartridge programmer
which will be called every 16.7ms by PROCESS_DATA_AREA. When called, this
special effect routine should compute data values and store them at the
appropriate Jocations within the song data area. (In fact, many effect

routines may call the O/S routines FREQ_SWEEP or ATN_SWEEP, which also require
that data be ordered appropriately within a song data area) This computed data
will then be output on the next pass through PLAY_SONCS (assuming that this
song data area has the highest priority of any data arez using the same

channel).

COLECOVISION SOUND USERS' MANUAL Page 23

Variables required by the effect which will not be output may be stored
wherever the programmer desires. Free locations within the song's dates area
might as well be used for effect variable storage, since the entire ten byte
arez is reserved for the song anyway. If no free locations exist within a data
area, which would be the case if an effect required both frequency and
attenuation to be swept, the effect can store the remaining needed variables
wherever convenient. . .

In order to interact properly with the 0/S sound toutines, each special effect
routine must conform to a certain format. A description of that format, and
how an effect interacts with the O/S routines, follows:

WHEN AN EFFECT BECINS - When loading a new note, if LOAD_NEXT_NOTE sees that
the note to be loaded is a special effect:

1) It stores in byte O of the song's data area the effect's CH® and a2 SONCNO of
2. SONCNO = 62 is used later by PROCESS_DATA_AREA to detect the fact that an
effect is using the data area.

2) It then takes the address of the special effect routine (ets's call it SFX)
from ROM and puts it into bytes 162 (NEXT_NOTE_PTR.

3) LOAD_NEXT_NOTE then calculates the ROM address of the header of the next
note in the song, stores that address in HL, puts the song's SONGNO in A, and
calls EFX « 0. In every special effect routine at SFX ¢ 0, there MUST be the
following code which saves the two passed values (see Figure 9):

SFX: LD (SAVE_x_NNP),HL
LD (SAVE_x_SONCNO) ,A
RET
EFX+7: code for sound effect starts here

where SAVE_x_NNP is a two byte location used by all the sound effect notes in
the current song to save the address of the next note in the song, and
SAVE_z_SONCNO is the address of a byte where the song number is saved. The
programmer may put SAVE_x_NNP and SAVE_x_SONGCNO wherever desired, {ncluding
somewhere within the song data area.

Thus, calling SFX « 0 allows each effect routine to save the next note's
address and the song's SONGNO. '

1ST PASS THROUCH EFFECT - After calling SFX « 0, LOAD_NEXT_NOTE calls SFX « 7
for the first pass through the body of the routine. At this location, there

should be code which initializes the appropriate bytes within the song data

area, as the next pass through PLAY_SONGCS, subject to the data area priority
system, will output this initial data in normal fashion.

As will be seen below, this same location (SFX ¢ 7) will be called every 16.7ms
by PROCESS_DATA_AREA to modify the data within the area. Therefore, the code
at SFX + 7 must know which pass is in effect, so that the song data area will

be initialized only on the first pass. A convenient way of doing this is to

test bit'? of SAVE_x_SONGCNO, the byte which contains the saved song number.
On the Ist pass through the effect, bit ? (and bit 6) will be gero, since the
largest possible SONGCNO (62) would not set this bit. If bit 7 is zero, then,

code to initialize the data area can be executed and bit 7 reset to prevent re-
injtialization. l.e.,

COLECOVISION SOUND USERS' MANUAL Page 2¢

SrX+?: LD HL,SAVE_x_S8ONGCNO

BIT 7, (L)
JR NZ,NOT_PASS_1
SET 7, (HL) ito prevent further passes thru inits
S iinitialize bytes within the data ares here
RET ito LOAD_NEXT_NOTE
NOT_PASS_1: icode for pass 2 or greater starts here

PRIORITY UPDATE - After calling 8FX « 0 and 8FX « 7, LOAD_NEXT_NOTE will retum
te PROCESS_DATA_AREA, which checks to see if loading & new note has caused a
change in either the channel used by the song (this happens with noise notes

within a musical song) or the song number. If a change has occured, \
UP_CH_DATA_PTRS will be called, which updates the data pointers on the basis of
priority within the block of song data areas (see description of this routine

in the preceeding "UTILITIES" section). Since a special effect note will cause

a change in the song number (from whatever it was to 62), UP_CH_DATA_PTRS will
always be called whenever an effect note is loaded.

SECOND PASS OR CREATER - The next time PROCESS_DATA_AREA is called (from
SND_MANAGER), which will be 16.7ms after PLAY_SONCS has sent out the effect's
initial data, it will detect the fact that an effect is using the song data

ares (by seeing a SONGNO of 62) and will JUMP to EFX « 7, rather than ecalling

the frequency and attenuation Sweep routines as it would for a normal note.

This will result in the first pass through the part of the body of the effect

toutine that actually does computation and adjusts the data values within the

data area. When the effect routine has completed its modifications to the data
area and performs a RET, control is transferred back to SND_MANACER, which then
moves on to the next song data area to be processed.

This p'rocess will be repeated every 16.7ms until the effect routine ftself
decides that it's over and takes action to load the next note in the song.

WHEN AN EFFECT IS OVER - Prior to performing a RET, the effect routine must
decide whether the effect note has finished. 1If it has, NEXT_NOTE_PTR within
the data area must be set to the address of the next note in the song and

SONCNO must be restored te byte 0. This can be done by calling the O/S routine
LEAVE_EFFECT which does this. The 3ddress of SAVE_x_NNP must be passed in HL
and the address of SAVE_x_SONCNO must be passed in DE. Finally, the effect
should JUMP te EFXOVER, a location within PROCESS_DATA_AREA which would
normally be reached once a note is over. The code there takes care of loading
the next note in the song. Thus, the final code of each effect routine will

look as follows:

RET if effect not over

LD HL,(SAVE_x_NNP) iHL := addr next note in song

LD DE,SAVE_x_SONCNO iDE := addr saved song number

CALL LEAVE_EFFECT ito restore them to bytes 0 - 2 in data area

JP EFXOVER +in PROCESS_DATA_AREA to load song's next note

The entire above described sequence is summarized in Figure 9.

® A sound effect as a single sound

A stand alone sound effect can be implemented within the previously mentioned
structures simply by creating a single note song. The single note is the effect

COLECOVISION 8S8OUND USERS' MANUAL page 25

and would be followed by an end of song code (or repeat code if you wish the
effect to go en forever).

Many stand alone effects may want to use more than one tone generstor channel:
e.g.., a special laser sap that momentarily requires all three tone generators,
or, as is often the case, & white noise effect of particular character that
requires the noise channel shift rate to be modified by channel three (see TI
data sheets). In these cases, the effect's routine will have towmodify data in
several data areas whenever called. The song data areas used by such effects
are subject to the normal priority structure. E.g., if you wish a two channel
effect to temporarily overwrite the harmony and bass lines of a repeating song,
the effect must have been assigned two data areas of higher priority (ordinally
later in the block of song data areas). If it is not necessary to maintain any
underlying songs, an effect can share data areas to conserve RAM space, with
the understanding that, as usual, songs or sounds that share the same song dats
area truncate each other. A multi-channel effect (a chord note, say) may be
included as a note within a song, but, again, the song data area priority
structure determines what will finally be heard.

Providing for a typical game's sound generation needs might require eight song
data areas: four for an underlying, repeating song(s) (three areas for the
three tone generators and one for the noise generator used for percussion
notes), and four for higher priority, occasional sound effects (which would
temporarily overwrite the repeating songs, but truncate each othern).

® Pseudo code listings ©f main routines

The following two pages contain pseudo code descriptions of most of the 0/S
sound routines. Some computational details are not shown, but all jumps,
calls, returns, pushes and pops are listed.

Terminology:
“.=" i{s used as the assignment statement, and “(zx)" means the contents of the
memory location peinted te by =zx, where "xx" i{s HL, IX, etc.

The structure of each description is as follows:

®2® name of routine wo®
the value expected for passed parameters (if any)

pseudo code description

of the routine, uninterrupted
by blank lines

RET

32 JUKE_BOX 333
B = SONGND 30 be started

PUSH BC
Call PT_IX_T0_SxBATA (IX set)
POP BC
RET 4¢ seng in progress
byte 0 := SONCND
set NEXT_WNOTE_PTR to i1st mste im seng
CALL LOAD_NEXT_NOTE
CalLL UP_CH_DATA_PTRS
RET

838 PLAY_SONCS @33

set & for CH1 OFF coade

set MSX C dor CHI attenuation
set MSN D for CH1 frequency
IX := (PTR_TO_S_ON_1)

(a.e., pt IX te byte © data ares of song feor CM1}

CALL TONE_OUT

set A 7or CH2 OFF cede

set MSN C for CHZ attenuation
set MSN D for CHZ frequency
IX = (PTR_TO_S_ON_2)

(4 e., pt IX to byte O data area of seng feor CH2)

CALL TONE_ouv

set A for CH] OFF ceode

setr MSN C for CH3 attenuation
set MSN D 4or CHI frequency
IX :®= (PTR_TO_S_ON_3)

(3.e., pt IX to byte O data area ef song for CHJ)

CALL TONE_OUT

set A ¢or CHO OFF code

set MSN C ¢or CHO attenuation
IX ‘e {(PTR_TD_S_ON_0)

(3.e., Pt IX 1o byte O data area of song for CWO)

IF area INACTIVE
turn 8f¢ CHO
ELSE
CALL UPATNCTRL (send curremt atn)
set LSN A dor current etrl data
IF current ctrl data d1¢7 fron last
reload SAVE_CTRL
CALL UPATNCTRL (send new ectrl)
ENDIF
ENDIF
RET

SZx SND_MANAGER 333

CALL PT_IX_TO_S:iDATA, seng €1
Loor
RET {1 end e song data areas
CALL PROCESS_DATA_AREA
Pt IX to byte O mext song data area
REPEAT LOOP 2

3=z PROCESS_DATA_AREA 832
IX = addr byte 0 of a song data area

CALL AREA_SONG_IS
REY (¢ ares INACTIVE
IF SONCND & 62
IP SFX4T (REY free SFX)
EMDIF
CALL ATN_SWEEP
CALL FREG_SWEEP
IF mote ever
EFXOVER: PUSH CHE® | SONCND mste just ever
CALL LDAD_WEXT_MDYE
POP CHE ! SONCNO mote just ever
IF CHO | SONGND newly loaded mnpte met
CHé ! SONCNO note just over
CALL. UP_CH_DATA_PTRS
ENDIF
ENDIF
RET

852 LOAD_NEXT_WOTE ®m=z3
IX = addr byte 0 o a song data area

byte © = CHE (er 00) ! BONGND

(SFX = addr of 8 special effect note's routine)

PUSH 0 O : SONGCND (CH® net pushed!
deactivate area lbyte 0 = FF)
A e (NEXT_WOTE_PTR) (hoader mew ROM mste)

CASE header type @
ilrest:
PUSH header ef mew ROM mote
set NEXT_KOTE_PTR for ngxt mnete in song
(4. 0., the note after this mew mete)
sel bytes in seng data area:
ATN = o¢¢
NLEN :® § hit rest duratien
FSTEP :e 0 (i.0., ac ¢req sweep!
ASTEP := 0 (no atn sweep!
J* mODBO
Ziend of song: \
IF end repeat
POP BC (3 = SONCNO!

CALL JUKE_BOX te reload 18t nete of this seng

RET (%o PROCESS_DATA_AREA!
ENDIF
PUSH inactive eode
JP mODBO
Jispecial effoct:
POP 1Y (IY := SONGNO)
PUSH IY to put SONGNC bact en stact
PUSK header new ROM note °
set NEXT_MNOTE_PTR, bytes 182, teo SFX
(address special effoct routine)
set DE to SFX
HL :® addr next mete in seng
(4.0, the mote after this now effect mote!
PUSH 1Y, POP AF (A = SONCND)
PUSH DE, POP IY (1Y :e $FX)
DE := PASS1, PUSH BE ’
JP (IY), d.e., °CALL (IY)I®, RET to PASS{
(SFX saves SONCND & addr mext note)
PASS1: IY e IY ¢ 7
DE := RODBO, PUSH DE
P (IY), §.e., °CalLl (IY47)°, REY o mODBO
(SFX+7 loads {mitial effect data)
4inorsal mote:
CASE mote tgpe
OINEXT_MOTE_PTR := adr song's axt mote
scve J bytes ROM note data 1o RAM
FSTEP :® 0 (no ¢req sweep)
ASTEP := 0 (nec atn sweep)
JR mODBO
1INEXT _NOTE_PTR :o adr seng's axt mete
sove S bytes ROM neote data to RAM
ASTEP := 0 (np atn sweep!)
Z)NEXT_NOTE_PTR := adr song's axt mete
sove S bytes ROM note data te RAR
FSTEP := 0 (no freq sweep)
JR RODBO
JIMEXT_NOTE_PYR := adr gsong‘'s Aaxt mete
sove 7 bytes ROM mnote data to RAaM
ENDCASE
ENDCASE

MODBO: PUSH IX

POP WL to point to bgte ©

POP AF (A = header new note)

POP BC (B := SONGNOD!

REY 4¢ header is fnactive (1.¢., seng 1o over)
IF header is for a spoecial e¢foct

B e 62, the SONCKRD for al) effect motes

ENDIF

byte © :® CHO (fros header neow mete) ! SONCNO (¢roe B)

RET

®33 INIT_SOUND B33

223 FREQ_SUEEP z3X

HL ® addr of LST_DF_AND_ADDRS -
TTT—3X_= addr byte 0 ©f & song data ares

3 © asuber 8f song data areas used by gase

sey RAM werd PTR_TO_LST_OF _SND_ABDRS te value passed ia WL
pt HL to byte O in ist seng data ares

D1 (ML) :® imactive ecode (OFFK)

HL e ML ¢ 310

DINZ B1 (set B arcas imactiive)

(ML) = end 8¢ data area eode (0)

Joad all 4 channel data area peinters with She
addr 8f @ dusay inactive ares (DURAREA)
SAVE_CTRL :® OFFH -

ALL_OFF. surn ef¢ all ¢ gemeraters directly
REY

BURAREA BEFD OFFN

883 UP_CH_BATA_PTRS B33

PUSH IX te save {t .
set all 6 ch data pirs %o & dussy, imactive area
CALL PY_IX_TO_SxDATA, song ¢ §
Loor
IF byte O indicates the end of the song data areas JR DONE
IF byte O indicates an active area
set ML to address of this area's channel data peinter
(i.e., ML := addr PTR_TO_S_ON_O ¢ (CKé this area 8 2))
PUSK IX
POP DE (DE = addr byte © this area)
(ML) s E, (HL41) := D
CNDIF
IX = IX ¢ 10
CNDIF
REPEAT LOOP
DONE POP IX to restore it
RET

532 TONC _OUT 33

IF FSTEP = 0 mete §s MOt 10 be swept
A = NLEN
%C A
RET Z (leave 4i¢ more over,K 2 {lag SET)
NLEN = A (store decromented MNLEX)
RET (note met over, 2 flag RESET)
ENDIF
PUSKH IX, POP ML (pt ML te kgte O)
HL :® HL ¢ 9ffset within data area of FPSV
CALL DECLSN to deCresent FPSU
IF Z dlag SET, FPSV has tised out
CALL MSNTOLSN se reload FPSV
& & MLEN
DEC A
RET 2 (leave §7 sweep over with 2 flag SET)
MLEN := A (gtere decressnied MLEN)
point WL Qe FREQ \
A := FSTEP
CALL ADDE16 te add FSTEP te FREG
RESET bit 2 ia hi byte FREQ
{4n case of overflow fros addition)
OR OFFH te RESET Z flag
ENDIF
RET

823 ATN_SUEEP 333
IX » adér byte 0 8¢ a song data area

RET with Z flag SET 4¢ byte 8 = O
(i .o, mote atn aot to be swept)
PUSH IX, POP WL (pt ML to byte O}
ML = HL ¢ offset within data area of APSV
CALL DECLSN to decresent APSV
IF 2 ¢lag SET, APSV has tised out
CALL MSNTOLSN te reload APSY
pt HL te ALEN (@ of steps in atn swoeep!
Call DECLSN to decreesent ALEN
IF Z $#lag RESET, sweep mot sver get
ATN = ATN ¢ ASTEP
(4 bit add, sverflow ignored)
OR OFFK te RESET Z flag
ELSE 2 7lag is SET (sweep is aver!
byte 8 := O to indicate sweep over
ENDIF
ENDIF
RET

IX = (PTR_TO_S_ON_z1, 4.e., IX pts tc byte O data area of song for Chx

A sot for CHx OFF code
MSN C set for CH: attenuation
HSN D set for CHx fregquency

IF area INACTIVE
tern 044 CHx
ELSE
CALL UPATNCTRL (send eut attenwation)
CALL UPFREQ (send sut froquomcy!
CNDIF
REY

888 PT_IX_TO0_S:DATA B3
B © a seng avaber

HL ‘o addr o¢ LST_OF _SND_ADDRS

HL o M{ = 2

BC :® ¢ B SONCNO

HL = WL ¢ BC (41.¢ , ML mow points to $S3DATA's entry §n LST_OF_SND_ADDRS)
€ ‘s (WL), D "= (HL41)

PUSK DE

POP IX (IX := addr byte O 87 this seng's data area)
RET

SESxDATA

Description:
nusber x.

and the
block.

LST_OF_SND_ADDRS, a table stored §

Byte O of each data area, in a
indicate two special conditions:

Storage area for
The song data areas
data area used by song
Song data area storage

MUST
is

FIGURE 1

the various tisers and putput data for song

be stored in a contiguous block of CPU RAM

nuasber one MUST be the first data area in the
uléo:atod according to addresses stored in
n CART

ddition to giving CH¢ and song nusber, can

ROM .

byte 0 = OFFH: song(s) using this data area are 1nlrtivo.

byte 0 = OOH: indicates end of-song data areas

I1¢# SONGNO = 62, the address of a special sound effect routine is stored in

bytes 1 and 2.

Length dn bytes: 10

Location: CPU RAM

Beginning address: pointed to by & 16 bit entry in LST_OF_SND_ADDRS \
! Contents :

Offset | B7 B¢ BS B4 B3 BZ Bl BO ! Description
--------------------------- B7 - Bé: song channel number, 0 to 3

0 { CHe# ! SONGNOD { BS - BO: song number, 1 to 61
--------------------------- SONGNO = 62, snd effect adr in next 2 bytes
--------------------------- usually, the addr of the next note in song;

1 i the LSB of an address...! {4 SONGND = OFEH, this is the LSB of the
--------------------------- addr of the special sound.effect routine
--------------------------- usually, the addr of the next note in song;

2 i the MSB of an address...! if SONGND = OFEH, this is the MSB of the
--------------------------- addr of the special sound effect routine

3 { F2 F3 F4 FS F& F7 F8 F9 ! bottom B bits of 10 bit éreq data
--------------------------- i# CHé = 0 (noisel: ATN ! O FB SHIFT

4 {ATNICTRL or ATNIO O FO F1! if CH¢ = 1 - 3 (tone): MSN = 4 bit ATN,
Bttt LSN = tpp 2 bits fregq (0 O FO Fi)
--------------------------- deteraines duration of note:

S H NLEN { 1f freq swept, = & of steps in the sweep
--------------------------- if not, NLEN % 16.78s = duration of note
--------------------------- freq sweep duration prescaler:

é H FPS H FPSV { FPS = prescaler reload value
--------------------------- FPSV = teap FPS variable storage
--------------------------- freq sweep step size: 1 to 127, -1 o -128

7 H FSTEP { if{ FSTEP = 0, freq is not to be swept
--------------------------- ALEN = & steps in atnswp: 2 = 1S (0 =) 14)

8 H ASTEP H ALEN ! ASTEP = gtep size: 1 to 7, -1 to -8
--------------------------- if whole byte = 00, atn not toc be swept
--------------------------- atn duration prescaler:

9 H APS { APSVY { APS = prescaler reload value
--------------------------- APSV = temp APS variable storage

DURATIONS: -

NLEN % 16 .7es

COINLEN = 1) % FPS) 4 dnitial FPSV] % 1¢.7as
dnitial FPSV % 16.7as

FPS

fixed frequency =
frequency sweep =
duration 1st step =
duration all others =
FPS: 0 to 1S5 (0 =) 16)

FPSU:
NLEN:

attenuation sweep =
duration ist step =
duration all others =

0 to 1S (0 =) 1¢)

APS :
APSU :
ALEN:

0 to 1S5 (0 =) 14)
0 to 255 (0 =) 2%4)
APS

0 to 1S (0 =) 1¢)
0 to 1S (0 =) 1¢)

C((ALEN - 1) % APS) 4 dinitial APSVU] % 16.7as
initial APSV % 16.7ms .

Note Header

Length in bytes:

FIGURE 2

1

Location: begins each block of 1 1o 310 bytes of note data in CART ROM
. Contents !
Offset ! B7 B& BS B4 B3 B2 BI BO'! Description e
XXX REST
—————— i¢ B7 = 1, header describes a rest:
0 ¢ CHe | 1 duration | B7 -Bé = channel nusber, 0 - 3
--------------------------- B4 - BO = duration, 1 to 30{——— \

header preceeds note data or is special indicator:

X% NOTE
-------------------------- note data follows:
0 i CHe ! 0! 0! 0: 0! type { B7 - Bé& = channel nusber, 0 - 3
--------------------------- Bl - B0 = note type, 0 -3,
or Xxx END OF SONG / REPEAT SONG
s e - if B4 = 1, end of song on channel in B7-Bé:
0 ¢ CH¢ ! 0! 11 R! 0! 0! 0 | i¢ B3 = i, repeat song forever
--------------------------- if B3 = 0, don't repeat
or X¥x SPECIAL EFFECT
--------------------------- this note is to be °played® by a special
0 ! CHe& ! 0! 0! 0! 1! 0! 0 ! sound effect routine whose addr is
--------------------------- contained in the following 2 bytes

REST DURATION =
duration: 1 to

duration % 16.7ss
31

FIGURE 3
LST_OF_SND_ADDRS

Description: LST_OF_SND_ADDRS is a list of the starting addresses of each
song's data ares and note list. They are used by JUKE_BOX as source (note
list) and destination (song data area) pointers. Each song's entries are

stored as follows:

Byte 1: LSB of thé address of the start of that song‘'s not® list
Byte 2: MSB of the address of the start of that song's note list
Byte 3: LSB of the address of the start of that song's data area
Byte 4: MSB of the address of the start of that song's data area

The beginning address of LST_OF_SND_ADDRS is stored in a dedicated CPU \AH 16
bit word, PTR_TO_LST_OF_SND_ADDRS (xxxxH), allowing the cartridge prograsser to
place LST_OF_SND_ADDRS wherever desired.

NOTE: In other data structures, six bits are allocated for the scng nuaber
{SONGND). However, song nuesbers 0, 62, and &3 are used as special indicators,
leaving song nusbers 1 = 61 available. Therefore, the first entry in
LST_OF_SND_ADDRS is for song nuaber 1.

Length in bytes: 4 X total nueber of songs .
Location: CART ROHM
Beginning address: pointed to by CPU RAM word SLST_OF_SND_ADDRS
(xxxxH)
H Contents H

Offset ! B7 B& BS B4 B3 B2 Bl BO | Description

e e e e e of starting adr of the note list for
0 { LSB { song
--------------------------- nusber 1

--------------------------- of starting adr of the note list for
1 H MSB { song
--------------------------- nusber 1

--------------------------- of starting adr of the data area for
2 H LSB ! song
--------------------------- nuaber §

......... — of starting adr of the data area for
3 H MSB { song
............ - == nusber |

--------------------------- of starting adr of the note list for
4 H LSB ! song
R e e e nusber 2

el of starting adr of the data area for
4 % n H MSE ! song
--------------------------- nusber n (n = total nusber of songs)

FIGURE
Rests

Length in bytes: 2
Location: CART ROM
Beginning address: pointed to by bytes 182 in that song's data area

I Contents H
Offset | BT BS& BS B4 B3I B2 BI BO ! Description

-

0 { CHé 1| 1! duration | B4 - B0 = duration, 1 to 30

REST DURATION = duration X 16.7ms
duration: 1 to 30

Note Type O:

Fixed fFrequency, Fixed attenuation
Length in bytes: &

Location: CART ROM

if B7 = 1, header describes a rest:

Beginning address: pointed to by bytes 182 in that song's CPU RAM data area

H Contents $:
Offset ! B7 B4 BS B4 B3 B2 B1 BO ! Description

0 i CHE | 0 f: 0! 0: 0! 0 ! header
b ! F2 FIF4 FS F6 F7 FB F9 | least significant 8 bits of 10 bit ¥#rq data
2 H ATN {0 OFOF1L ! ATN = 4 bit atn data, LSN = top 2 bits freg
3 ! " NLEN ! NLEN % 16.78s = duration of note
NOTE DURATION = NLEN % 16.7as

NLEN: 1 to 255 (0 =) 254)

Note
swept frequency,

FICURE S

Type 31

Ffixed mttenuation

Length in bytes: é
location: CART ROM
Beginning address: pointed to by bytes 182 in that song's CPU RAM data area

Offser

e o

{ Contents i
¢« BT Bé BS B4 B3 BZ B1 BO ! Description

0 t CHé¢ ! 0! 0! 0! 0! 0! 1 ! header '

1 ! F2 FI F4 FS F6 F7 FB F9 | least sig € bits of initial 10 bit frg.data

2 H ATN {0 OFOF1 ! ATN = 4 bit atn data, LSN.= top 2 bits freq

3 ! NLEN ! NLEN = nuaber of steps in the sweep
-------------------------- freq sweep duration prescaler:

4 § FPS { FPSV { FPS = prescaler reload value
-------------------------- FPSV = initial FPSV

S H FSTEP 4 freq sweep step size: 1 to 127, -1 to -128

NOTE DURATION =
duraticn 1st step =

CO(NLEN = 1) % FPS) ¢ dnitial FPSV] % 14.7as
initial FPSV % 16.7as

duration all octhers = FPS
FPS: 0 to 1S (0 =) 1)
FPSV: 0 to 1S (0 =) 16)

NLEN: 0 to 255 (0 =) 256)

. e FIGURE &
\

Note Type 2:

fFfixed fr.quoncu, Ewvept attenuation

Length &n bytes: é
Location: CART ROM ,
Beginning address: pointed to by bytes 182 in that song‘'s CPU RAM data area

. L

- ! Contents {
Offset ! B7 P& BS B4 B3 B2 B1 BO ! Description

0 ! CH& | 0! 0! O0! O! 1! O ! header b

i ! F2 F3 F4 FS Fé F7 FB F9 | least significant 8 bits of 10 bit frgq daza

2 H ATN {0 0OFOF1 { ATN = init atn data, LSN = top 2 bits freq

3 H NLEN ! NLEN % 16 .7as = duration of note
--------------------------- ALEN = & steps in atnswp: 2 = 15 (0 =) 14)

4 H ASTEP H ALEN | ASTEP = gtep size: 1 to 7, =1 1o -8B
--------------------------- if whole byte = 00, atn not to be swept
--------------------------- atn duration prescaler:

S H APS { APSY i APS = prescaler reload value
--------------------------- APSV = initial APSV

NOTE DURATION = NLEN % 16.7es

NLEN: 1 to 255 (0 =) 256)

ATN SWEEP DURATION = CU(ALEN - 1) % APS) 4 initial APSV] % 16 .7ss
duration 1st step = initial APSV % 1&.7as
duration all others = APS

APS: 0 to 15 (0 =) 1¢)

APSV: 0 to 15 (0 =) 16)

ALEN: 0 to 15 (0 =) 1¢)

Note Type 3:

SEwept Ffrequency,

Length in bytes: 8
Location:

CART ROM

FIGCGURE 7

Bwept attenuation

Beginning address: pointed to by bytes 182 in that song's CPU RAM data area

.

{ Contents {
_DIfitr BT Be BS Bibsm2 BiM 1

OO
L LLLLLLY
LT
S
Com e
S
o o mw
Tt a1 aese:

NOTE DURATION =
duration ist step =

duration all others =
0 to 1S (0 =) 1¢)

FPS:
FPSV:

e - e - - - -

FPS

0 to 15 (0 =) 1¢4)

Description

header

least sig 8 bits of init 10 bit frq data

ATN = init atn data, LSN = top 2 bits freg

NLEN = nusber of steps in the sweep

freq sweep duration prescaler:
FPS = prescaler reload value
FPSV = initial FPSV

freq sweep step size: 1 to 127, -1 to -128

ALEN = ¢ gteps in atnswp: 2 - 185 (0 =) 1¢)
ASTEP = gtep size: 1 to 7, -1 to -8
if whole byte = 00, atn not to be swept

atn duration prescaler:
APS = prescaler reload value
APSV = initial APSV

COINLEN = 1) % FPS) 4 dnitial FPSV] g 16.7es
initial FPSVU % 1¢&.7as

NLEN: 0 to 255 (0 =) 256)

C{(ALEN - 1) % APS) ¢ initial APSV] g 16.7as
initial APSV % 16.7ss
APS

ATN SWEEP DURATION =

duration 1st step =

duration all gthersg =
APS: 0 to 1S (0 =) 1¢)
APSU: 0 to 1S5 (0 =) 1¢)
ALEN: 0 to 15 (0 =) 31¢)

. FIGCURE s
Noise notes:
Special case type Z notes

length in bytes: S
Location: CART ROHM
Beginning address: pointed to by bytes 182 in that song's CPU RAM datz area

B L4 L
{ Contents {
Offset { B7 B& BS B4 B3 B2 Bl BO | Description

0 {01! 6: 0! 0! 0: 0: 23 0 ¢ header (CHE = 0, indicates noise ﬂof\)
. MSN = 4 bit noise ATN data (init if swept)
1 { ATN { O FB SHIFT ! LSN = npoige control data (SHIFT = NFO NF1)
2 H NLEN { NLEN % 16.7as = duration Qf note
e mm—eeee ALEN = & gteps in atnswp: 2 - 1S (0 =) 16}
3 H ASTEP { ALEN i ASTEP = gtep size: 1 to 7, =1 20 -8B
== if whole byte = 00, atn not to be swept
-------------------------- atn duration prescaler:
4 ki APS H APSV ! APS = prescaler reload value
--------------------------- APSV = temap APS variable storage
NOTE DURATION = NLEN % 16.7as

NLEN: 1 to 255 (0 =) 2%5¢)

ATN SWEEP DURATION = C((ALEN = 1) % APS) ¢ initial APSV] % 1¢&.7as
duration 1st step = initial APSV % 1&.7as
duration all octherg = APS

APS: 0 to 1S (0 =) 1¢)

APSU: 0 to 15 (0 =) 14)

ALEN: © to 1S (0 =) 16)

FIGURE <@

Dedicated cartridge RAM locations and
Speciml Effect format

Length in bytes: 11

Location: CPU RAM
Beginning address: T020H

PTR_TO_LST_OF_SND_ADDRS DS 2 ipointer to start of LST_OF _SND_ADDRS

PTR_TO_S_ON_1 DS 2 ipointer to data area of song to be played on CHé 1§
PTR_TO_S ON_2 DS 2 . ipointer to data area of song to be played on CHE 2
PTR_TO_S_ON_3 D5 2 ipointer to data area of song to be played on CHE 3
PTR_TO_S_ON_O DS 2 iPointer to data area of song to be played on CH¢ 0
SAVE_CTRL DS 1 iLSN = last control data sent to noise generator

Special Effect forsat

All special effect routines should be written in the following forsat
(SFX = the address of the effect routine, stored in ROM after the effect's
header, IX is passed pointing to the song's data area):

SFX: LD (SAVE_x_NNP) ,HL isave address of next note in song
LD (SAVE_x_SONGND) ,A isave song's SONGND
RET ito LOAD_NEXT_NOTE
SFX47: LD HL,5AVE_x_SONGNO itest for i1st pass through effect
BIT 7, (HL)
JR NZ ,NOT_PASS_1
SET 7, (HL} ito prevent further passes thru inits
R idnitialize bytes within the data area here
RET ito LOAD_NEXT_NOTE
NOT_PASS_1: ... icode for pass 2 or greater starts here,

iwhich algoritheically modifies freq, atn,
i0r control data within song data area
. ipointed to by IX
RET (to PROCESS_DATA_AREA) 14 effect not over
i4¢ here, effect is over, 80 restore SONGNO and addr naxt note in song
LD HL, (SAVE_x_NNP) iHL := addr next note in song
LD DE,SAVE_x_SDNGNO iDE := addr saved song nusber
CALL LEAVE_EFFECT ito restore thes to bytes 0 - 2 in data area
JP EFXOVER iin PROCESS_DATA_AREA to load song's next note

| HOO I 0 09 8ne #3189 sjyy
H 6 s1ky

L]

L]
H 0 018q | :wesw wiup Puos ey

1 0 oi1hg 4

WYY ¥3sN

‘BOJW wiwp Bues ysuy,

‘ueJw wiwp Bues pusires

[I 038q Buos 40 pue
[
I

i
1
' ' -
' Buos | HvZoL | 1 2I812734VS
] 188y Jey mHTeeeEmaw
{ (®yep oj0u) ! 0
I ey aveyn | = e
S e HBZOL | I 0TNDTS 04 MLd
L] - - -
. l ' I
o N % - - - Buos jswy * - - - -
| 2o Buos uop [' H9Zos 1 I SE"N0"ST0L7 N4
| (e3wp s308) —SERREEERE . MSSEssE e
| 1887 evoN | . ! !
. - -
t I o3kq Buos 0 pus ° HYZOL | 1 27N0"ST047u1d
' ' 1 ' '
! ! = & S
] ' 1 HZ2oL | I S3TNOTS 0L WAd
') RS S R e SEssssasas
I 10 Bueoe oy]]]
I (etep sv0w) - - - - 1e Buos - - - -
I 8§y eaoy | | SHOOY ANST 40715 HOZOL o | ‘SNAAV ANS~ 3074517047 ¥Ld

WOM Hou WVd @31vIl1€3a

OF 3IMNDIX A

December 7, 1982

NOTES AND ERRATA
for ColecoVision Bound Users®' Manual
Version 1.1

The following is a list of known errors in the User's Manual and
a set of explanatory notes which hopefully serve to clarify some
of the concepts presented therein. It is suggested that, prior
to reading the Manual, corrections be made sccording to the
tollowing list and references to the explanatory nofes be marked
at the appropriate passages.

page

page

page

page

page

FIC 2

FIC 3

12

16

18

21

222 FRRATA tan

\
about half way down the page, starting near the right
margin:

* where = the song's SONGNO"

- should read -

delete - There is no mecessary relationship between a
SEONGCNO and a song data area. As becomes clear later,
several songs (with different SONCNOs) can share the same
data area. This error also occurs in the first sentence
of FIGURE 1. °

next to last line:
- add -
“0 = no sweep"

first line:
“"PLAYSONGS"

- should read -
“"PLAY_SONGCS®

last two lines:
“RETs C SET..."
“RETs C RESET...*"
- should read -
“RETs Z SET...*™
“RETs Z RESET...*"

the following utilities are not generally useful, are not
available as entry points, and therefore can not be used:
AREA_SBONG_1I8

UPATNCTRL

UPFREQ

PT_1X_TO_SxDATA

UP_CH_DATA_PTRS (on page 22)

last line of REST description:
“Bq9 - B0 s duration, i to 31"
- should read -

“B4 - B0 = durat.on, § to 30"

about one third down and half way down the page:
“exzxH"

- should read -

“7020H"

USER RAM

This is the area fn CRAM that the cartridge programmer has chosen
to hold the ten byte song data areas which contain sound and
timing information to be processed by the 0S sound routines.
These data areass must be stored as contiguous blocks ef ten bytes

each. In all cases but one, the programmer may choose to “play"
& song in any data ares; however, song &1 MUST use the FIRET song
data area for the O8 routines to work properly. Also, the byte

immediately following the last byte in the last datt ares MUST be
sero (this code tells the OS routine SEND_MANACER to stop fooking
for more song data areas; see bottom of page 3, Users' Manual).
This byte will automatically be set to gero by proper inveocation
of the INIT_SOUND routine before any other OS5 sound routines are
called (see pages § and 13).

, \
2) The ColecoVision OS entry point names of some of the sound
routines and dedicated locations are different from their names

given in the Sound Users*' Manual. They are:
Entry Point Eound Users' Manual
PLAY_IT JUKE_BOX
S80OUND_MAN END_MANACER :
SOUND_INIT INIT_80OUND
NOTES PTR_TO_LST_OF_8ND_ADDRS

You should use the entry point names.

3) Page 22, last paragraph: It is mentioned that a special
effect routine may want to call the OS sound toutines FREQ_SWEEP
and ATN_SWEEP to operate upon data within the effect's data area,
which “require that data be ordered dppropriately within a song
data area". This means:

Whether or not the special effect uses FREQ_SWEEP eor
ATN_SWEEP: bytes 3 and 4 (see FIGCURE 1) MUST contain the
frequency and attenuation data as specified. This is
because PLAY_SONGCS (called every interrupt) will output

For FREQ_SWEEP used by itself - in addition to bytes 3
and 4, bytes S, €, and 7 must contain data as specified.

Eytes 8 and 9 may be used for whatever (since FREQ_SWEEP
doesn't look at them).

For ATN_EWVEEP used by itself - in addition to bytes 3 and
4, bytes S, 8, and 9 must contain data as specified.
Bytes 6 and 7 may be used for whatever (since ATN_SWEEP
doesn't look at them).

It both FREQ_SWEEP and ATN_SWEEP are used, all bytes in
the data area must look as specified in FICURE 1§.

PTR_TO_S8_ON_3:
7026-27H - As above, for tone generator €3.
: h \
PTR_TO_8_ON_0:
7028-2YH - As above, for tone generator 80 (the noise
generator). :

The final byte at 702AH, BAVE_CTRL, {s used by the 0OS sound
routines to store data necessary for smooth operation of the
noise generator (see bottom of page 11 in the Us.tl; Manual).

All 11 bytes should be initialised before the OS routines which
operate upon them are called: this is done by calling INIT_SOUND
and passing the appropriate cartridge-dependent information (see
Users' Manual pages § and 13).

\

ROM

Cartridge ROM to be used by 08 sound routines is divided into two
sections: LST_OF_SND_ADDRS and the Note List.

LET_OF_SND_ADDRS:

A contiguous list of 4 bytes per each song (or special
effect) used by the game. In each 4 byte section, the
first 2 bytes are a pointer to the beginning of the
song's note list (also in ROM). The second two bytes are
38 pointer to the song data area in RAM to be used by that
song (review pages 2 and 3 in the Manual). Of course,
another song may also use the same data area, since there
can be (and usually are) more songs than there are data
areas. NOTE, however, that Song €1 MUST be the first
entry in LST_OF_SND_ADDRS for the OS routines teo cperate
properly.

-- EXAMPLE -- The tirst two bytes in this list are a
pointer to song #1°'s note list, as they MUST be. The
second two bytes are a pointer to the song's data area in
RAM, shown here pointing to the first song data area as
also MUST be the case (see later). As can also be seen
from the figure, the last song happens to use the second
song data area.

In summary, there is a note list for every note list
pointer in LST_OF_SND_ADDRS, but, since songs may share
RAM data areas, there are almost alwiys more data areas
than there are data area pointers.

NOTE LIST:
The Note List is a contiguous block of ROM containing the data
which comprise the notes of each song. The number of bytes per
song of course varies with the length of the song. The first

byte of the note list for a song is pointed to by a two byte
entry in LST_OF_SND_ADDRS (see above). The last byte of each
song's note list is a single byte end of song/repeat code (see
page 2 and Figure 2 in the Users' Manual).

also, half way down the page:

“...pointed to by CPU RAM word LS8T_OF_S8ND_ADDRS"

- should read -

“...pointed to by CPU RAM word PTR_TO_LST_OF_SND_ADDRS"

FIC 4 second line:
“Length in bytes: 2*
- should read -
“Length in bytes: 1"

also, about ¢ Iines down from that: =
“"B4 - BO= duration, 1 to 81"

- gshould read -

“"B4 - BO= duration, § to 30"

st NOTES mt®

1) After reading through page 6 in the Users' Manual, it may be
helpful to review the following summary of dedicated pointers and
data structures (discussion refers to Figure 10, included as part
of these notes):

DEDICATED RAM

Prior to calling any OS sound routines (except INIT_B8OUND), the
11 CRAM locations 7020H through 702AH must be initialiged to
meaningful data. Ten of the locations are two byte pointers:

PTR_TO_LST_OF_SND_ADDRS:

7020-21H - Points to the start of a list of pointers in
cartridge ROM, LST_OF_SND_ADDRS (see later). The 0§
sound routines know where the cartridge-dependent
LST_OF_SND_ADDRS is stocred through this pointer. It is
shown pointing to the first byte in this ROM list (as it
must) .

PTR_TO_S_ON_1:

7022-23H - This and the following three pointers are used
by OS sound routines to store the addresses of the four
song data areas which currently contain the sound data to
be modified/output to the four sound generators in the TI
sound chip. This pointer stores the a2ddress for the song
currently playing on tone generator @1.

-- EXAMPLE -- PTR_TO_S8_ON_3 is shown pointing to the

second song data area. I1.e., data for the song currently
plagying on tone generator ®#3 happens to be stored in the
second song data area. The second data area i{s used for

purposes of ifllustration only: other songs may very well
require that data for tone generator 83 be stored in a
different song data area. '

PTR_TO_8_ON_2:
7024-2SH - As above, for tone generator 82.

