COLEICOVISION SOUND USERS' MANUAL page 17
FREQ_SWEEP

FRECQ_SWELP is used by SND_MANACER and special effects routines to craate
frequency sweeps. It operates upon frequency data stored within a seng data
ares, and is normally called Gy SND_MANACER or a special effect routine) once
every VDP interrupt (14.7ms). The start of the data area (address of byte 0)

is passed {n II.

FREQ_SWEEP assumes Sata has been stored as follows (names which may be used to
describe the warious bytes or byte segments within the datz ares are indicated;

see Figure 1):

brte 3: the least significant 8 bits of that noté's frequency FZ - I'M
byte & top 2 bits of that nete‘s frequency: Bi » FO, BZ = Fi

byte 5: NLEN - datermines the note's duration:
1) if freguency is to be swept, NLEN = number of steps in the sweep:
2 to 235 (0 =) 23&
2) if fized frequency, NLEN ® 14.7 ms = duration of the nete:
1 to 255 (0 e) 25&)

brte é. FPS | FPSV - frequency sweep duration prescaler:
FPS = prescaler relead value: 0 to 1S (0 =) 18)
FPSV = temp storage nibble for FPS: init ROM value, 0 to 13 (0 =) 1&)
duration of sweep (& note) = [((NLEN-1) ® EPS) ¢ initizl FPSV] * 1{.7ms
duration Ist step = (nitial FPSV * 14.7ms
duration all other staps = FPS * 146.7ms

byte 7: FSTEP - frequency sweep step size: signed B Bit number, two's
complemant: 1 to 127, =1 to =128
if FSTEP = 00, frequency is not to be swept, but NLEN is decremented
sach time called

Parzmeter limitations:
1) In a frequency sweep, & "step” consists of a single fired frequency tone;

therefore, the minimum number of steps & {regquency sweep can have is two
(otherwise the frequency wouldn't have "swept™).

2) If a note is to be frequency swept, FSTEP must not be 0.

3 The minizmum length fixed frequency note has NLEN = 1,

§) Mazimum NLEN 0, which ls equivalent te 254.

FREQ_SWEICP returns with the Z flag SET if the note (swapt or fizred) iz ovar,
RESET if the note is not over. (PROCESS_DATA_AREA decides that a note is over

when FREQ_SWEEP retumns with the Z [lag set)

INPUT: 16 Bit address of a song data arsa in CPU RANM

PASSED: in IX
DESCRIPTION: FREQ_SWEEP operates upon frequency data within this seng data ares

OUTPUT: 1) duration and sweep counters are decrementad
2) freq data in bytes 344 Is modified if note is freq swept
1) returns with Z flag SET if note over, RESET if note not cver

COLECOVISION BOUND USERS' MANUAL i
ATN_SVELP

ATN_SVWVELP i5s used to ecreate attenuation sweeps. It operates upen attenuatien
data stored within g seng data area, and is nermally called (by
PROCESS_DATA_AREA or 2 special elfect routine) once every VDP interrupt
(16.7m8). The start f the data arez (address of byte O) is passed in IX.

ATN_SWELP assumes datz has been stored as fellows (see Figure 1)
byte & ATH - the PMIEN = ¢ bit attenustien

byte &: ALEN ! ASTEP - no-sweep code or sweep length and step size:
1) 16 byte 8 = 00, ATN is not to be swept and countars aren't changed
2 if byte & non zero, attenuatien iz to be gwept:
8) ALEN = number of steps in the sweep: 1 to iS5 (@ =) 18
b) ASTEP = sweep step size: 1 3o 7, =1 to -8 (signed, 4 bit two's
complement)

brte ¥: APS | APSV - attenuation sweep durztion prescaler:
1) if attenuation Is not swept, byte ¥ is not used by ATN_SWELF
2) if attenuatieon is teo be swept:
APS = prescaler relcad value: 1 to 13 (0 =) 1O
APSV = temp storage nibble for APS: init ROM value, 1 to 13 (0 =) 18
duration of swapt attenuation part of note =
CUALEN = 1) ® APS) ¢ imitizl APSVI ® 14.7 mse
duration st step = initizl APSV ® 14.7ms
duration all other steps = APS t 14.7ms

Parazeter limitations:

1) In an attenuation sweep, & “step” consists of & tone (swept or not) played
at 2 fized attenuation level; se, the minimum number of steps an
sttenuation sweep can have is two (otherwise the attenuation wouldn't have
“swept”). Therefcre, the minimum ALEN value is 2 (0 = 16)

2) It a note is to be attenuation swept, byts 8 must not be 00.

3) The absolute value of ASTE? must be) = 1.

1f byte 8 is 00, ATN_SVEEP returns immediately with Z flag SET (the sweep is
svar ar tha nots wie navar swest), znd doesn't modify any counters. When a
sweep f[inishes, ATN_SWELP seots byte & to 00 and returns with the Z flag SET.

1¢ a sweep {5 In progress, ATN_SWEEP returns with the Z flag RESET. MNOTE:
PROCESS_DATA_AREA decides that & note is over when FREQ_SVELP returns with I

get: the length of a note has nothing te do with when its atin sweep is over)

INPUT: 16 bit address of 2 song data area in CPU RAM
PASSED: in IX
DESCRIPTION: ATN_SVELP operates upon frequency dita within this seng data area

OUTPUT: 1) duration and sweep counters are decremented Lf sweep In progress
2) atn data in byte 4 is modified If nole iz atn rwept
3) RITs C SET, byte 8 = 0 if sweep is over or nole was never swept
RETs £ RISCT U gweep in progress

18

COLECOVISION SOUND USERS' MANUAL page 19

PROCESS_DATA_AREA

PROCESS_DATA_AREA {s ecalled by END_MANACER. For an active data area (address
of byte 0 passed in I, PROCESS_DATA_AREA modifies the timers, sweep counters,
frequancy, &nd attenuation data by ecalling FREQ_SWEEP and ATN_SVEEP. If{ a note
finishes during the current pass through PROCESS_DATA_AREA, the next note (n
the song iz examined and its data iy loaded into the data area (calls
LOAD_NEXT_NOTE). Then, in order to maintain the song data area priority
structure, the CHE | EONCNDO of ths newly lsaded note is co=mpared te the

CHE ! SONCNO eof the previous nota: i there is a differgence, UP_CH_DATA_PTRS is
called to adjust the channel data area pointers in response to the change

caused by loading the next note.

If the datz ere:z (s heing used by 2 special seund effect, PROCESS_DATA_AREA
calls the sound effect routine whesa address (s stored in bytes 1£2 of the datz
ares (the &ctual address called (s routine ¢ 7. see discussion of special sound

effects).

1f the datz erez ig inactive, TROCISS_DATA_AREA returns l=mediztely (oo

- -

processing oscucs).

INPUT: address of byte 0 of 2 song data arsa
FASSED: in II

CALLE: ATN_SVEEP, FREQ_SWEEP, LOAD_NEXT_NOTE, UP_CH_DATA_PTRS, AREA_SONC_IS

OUTEBUT:) if active, modifies song dztz srea's timer, freq, and atn data
2) locads the next note's dats when a note is finished
3) if special sound effect routine using data area, calls it
€) when necessary, updates the channel data arsa pointers

COLECOVIBION SOUND USERS' HMANUAL page 22

LOAD_NEIT_NOTE

Called by PROCESS_DATA_AREA and JUKE_BOX, LOAD_NEXT_NOTE ezamines the nert note
to be played In a data area (address byte 0 passed in ID and moves its data

into the area. It fills in bytes (a.g.. to indicate gswept or not swept) where
appropriate, based upen note type. If the next "note” ts & special sound

eftect, its address is saved in bytes 182 and the addrass of the routine « 0 is
called, with the address of the nete to follow the effect passed tn KL and

EONCNO passed in A. *his will cause the special effect routine to szve beth

these values. Then, the special effect routine + 7 is ealied, which allows the
routine to initialise the song data area for the tirst pass through PLAY_BSONCS.

(ses discusgion of sgpecial sound effects)

Prior to moving tha naxt nots <dats, LOAD_NEXT_NOTE saves the data aret's byte O
(CHE ! SONCONO) and stores the sceng inactive code (OFFH) thare. The last thing
LOAD_NEXIT_NOTE does is restore byte 0, loading CH® with the CHe | BONCNO of the
new note (usually the same as the old note). If the new note is & special

sound effect, 2 is returned as the SONGND part of byte 0.

INPUT. eddress of byte 0 of a seng data sred
PASSED: in IX

QUTPEUT: 1) sets up seng datz area with data from nezt note to be played

2) for next note = special sound effect, calls the effect twice, first
with the address of the following note in the song and the scng's
SONGNO, and then once more to allow the effget to inttialize the
song datz area

3) it nert note is "normal", loads CH® ! SONCND in Byte 0 with
CHE | SONCNO of new note

§) retumns with byte 0 = OFTH if song over, SONCNDO = é2 if next note is

a sound effect

COLECOVISION SOUND USERS' MANUAL pPage 21
UTILITIES

The following are O/F wtility routines, used by the main 0O/5 sound programs,
that may be of usa to the cartridgs progrimmer:

t2® ARCA_SONC_I8§ t=¢

The address of byfe 0 of & song data area is passed in IX. The song number of
the song using that area is returned in A (OFFH U inactive). If a special
effect was using that area, &2 is returned in A and HL {s returned with the
address of the speciil sound effect routine.

t=® UPATNCTRL tre

Ferform single byte update of the end chip noise control register or any
attenuation register. IX ls paseed peointing te byte 0 of 2 mong datz zresa, MEN
register C = formatted channel gttenuation code.

*:x UPFREQ ®=2

Perform double byte update of a scund chip frequency register. 1T iz presed
peinting to bytel of & song data area, MSN regqister D = formatted channel
frequency code.

*x2 DECLSN et

Without affecting the MSN, decrezment the LEN of the brte pointed teo by HL. HL

rexcains the sime.
RET with Z flag set if dec LSN results in 0, reset otharwise.
RET with C flag set if dec LSN results {n -1, reset stherwise.

tre DECHMEN TR

Without affecting the LSN, decrement the MSEN of the byte peointed te by ML. HL

rezains the same.
RET with Z flag set if dec MSN results in 0, reset otherwise.

RET with C flag set i dec MSN resulls in =1, reset clharwise.

e ® WELERAF S a8
2ot Fimd it b =i e S

Copy MSN of the byte pointed to by HL te the LEN of that byte. KL remzins the
sime.

tere ADDEIé mun

Adds B bit tweo's complement signed value passed in A to the 14 bit location
peinted to by KL. Result is stored in the 14 bit locstion.

tt® PT_IX_TO_SzDATA ®tt

A SONCNO is passed in B. PT_IXI_TO_SzDATA retums with IX pointing to the song
data arexr which is used by that SONCNOD.

COLLCOVISION SOUND USERS' MANUAL page 22
wew UP_CH_DATA_PTRS =2t

UP_CH_DATA_FTRE adjusts eich channel data pointer to peint to the highest
priority (ordinal last) seng data area that uses that channel. It is called
whenever & change has been made to 2 song data ares that requires modlification
ef the channel data pointers.

All 4 channel data pointers (PTR_TO_S_ON_x) are initially peimted to 3 dum=my
inactive area, DUM_AREA. Then, moving in erder from the first data area to the
tagt, CHE in byte 0 of each datz area is examined, and the corresponding
ehannel data petnter is peinted to that datz area. Thus, by the time the

routine is done. each channel data pointer is peinting te the last active data
area that contzins date te be sent to that zhannel. If none of the active data
sreas used & particular channel, then that channel remains peinting to DUM_AREA

(and therefors its genarator will be tsrmed 2¢f next time through PLAY_SONCS)

sxes LEAVEI_EFFECT eee

LEAVE_EFFECT, called by & special sound sffsct zoutine when it's finiehed,
rectares the SONCNO af the song to which the effect balongs to BS - B0 of byte
5 in the effect's data erea, and loads bytes 1 & 2 with the sddress of the nerxt
note in the seng. The address of tha ! Syte EONCND (=aved by the effect whan
it was first called) is passed in DE. The 2 byte address of the next nota in
the scng, also saved by the effect, is pessed in KL. IX is assumed to be
pointing to byte 0 of the data area to which the song number is to be restored.
Bits 7 & 6 of the saved SONCNO byte are not stored into byte 0, and thereifore
may be used during the course of the effect to gtore any useful flag
information.

SPECIAL SOUND EFFECTS
g Sound effects asgs notes within & song

Sounds which do not fit cne of the siz categories of “normal” musical notes can
be crezted and played throughout the course of & scng as “special effect”

notes. Unlike nermal musical notes, which are stored In ROM as tables of
trequency/control and attenuation data, a special effect's data are determined
algolrithmically by & custom routine written by the cartridge program=er.

Special effect notes can also be used to generate sounds that could have been
comprised of many normal notes, but which ace mors afficiemtly Un tar=s of ROM
space used) computed by & short program.

Thess notes usae the same song data area as the song within which they &re
contained, and thay are stored in the song's ROM note list with & cne byte
header as are normal netes. Howsver, the bytes following the ROM header do not
contain data to be directiy lcaded into the song dats 2rez. The headsr (see
Tigure 2), which specifies the cehannel upon which to play the effect (which is
usuilly the same &s the channel used by tha rest of the notes in the song), is
followed by a two byte address of & routine written by the cartridge programmer
which will be called every 1é.7ms by PROCESS_DATA_AREA. Whean called, this
special affect routine sheould compute data values and store them &t the
appropriate locations within Lhe song data area. (In faect, many effect

routines may call the O/S routines FREQ_SWVEEP or ATN_SWELP, which tlso require
that data bde crdered appropriately within & song data area) This computed dats
will then be output on the nest pass through PLAY_SONCS (assuming that this
song datz irea has the highest priority of any datz ares using the sime

channal).

COLECOVIBION BOUND USERS' MANUAL page 23

Variables required by the affect which will net be output may be stored
whereva: the progrimmer desires. Free locations within the song's data area
might as well be used for effect variable storage, since the antire ten byte
area is reserved for the song anyway. If no freas locations emist within a dxta
area, which would be the case if an effect required both frequency and
attenuation to be swept, the effect can store the remaining needed variables
wherever convenient.

In erder to interact properly with the O/S sound reutines, each special efimet
routine must conform to 2 certain format. A description of that format, and
how an effect interacts with the 0/8 routines, follows:

WHEN AN EFFECT BECINS - When loading & mew nets, Y LOAD_KEXT_KNOTE sees that
the note to be loaded l= 2 special affsct:

1) It stores in byte 0 of the song's data arez the effect's CKE and & SONCNO »f
62. BONCNO = 62 is used later by PROCESS_DATA_AREA te detect the fast that an
gifect is using the date eresa.

2) It then takes the sddress of the special effect revtine Usts's call it EFD
¢rom ROM and puts it inte bytes 162 (NEXT_NOTE_PTR).

3) LOAD_NEIT_HOTE then calculates the ROM address of the header of the nest
note in the song, stores that address in HL, puts the song's SONCNO tn A, and
cells 5FI « 0. In every special effect routine at SFX ¢ 0, there MUST be the
following code which szves the two passed values (see Figure):

8TX: LD (BAVE_x_NKP) HL
LD (SAVE_x_SONCKNO).A
RET
SrXl«7: code f{or sound effect starts hara

whare SAVE_x_NNP is 2 two byte location used by all the sound effect notes in
the current song to save the address of the next note in the song, and
SAVE_z_SONCND {s the address of a byte where the song number is szved. The
program=er may put SAVE_x_NNKNP and SAVE_x_SONCNO wherever desired, including
scmewhere within the song data area.

Thus, calling SFX « 0 allews sach sffect routine to save ths nazt note's
iddress and the song's SONCNO.

1IST PASS THROUCH EFFECT - After calling 8FX « 0, LOAD_NEXT_NOTE calls 8FX « 7
for the first pass through the body of the routine. At this lecation, there

should be code which initializes the appropriate bytes within the seng data

ired, as the next pass through PLAY_SONCS, subfect to the data area priority
system, will cutput this initial data in normal fashien.

Ags will be geen below, this szame locstion (SFX « T will be called every 14.7ms
by PROCESS_DATA_AREA to modify the datzs within the arsa. Therefore, the code
at ST « 7 must know which pass is in effect, so that the song date arez will

be (nitialized only on the first pass. A convenient way of doing this is te

test Bit 7 of SAVE_x_SCONCNO, the byte which contains the saved song number.
On the Ist pass through the effect, Bit 7 (and bit 6) will be cero, since the
largest poseible SONCNO (§2) would not set this bit. 1If bit 7 iz gero, then,

cede to inftizlize the Gata arez can be executed and bit 7 reset to prevent re—
inftizlization. l.s.,

COLECOVISBION SQUND USERS' MANUAL Page 2¢

STI.7: LD ML,SAVE_x_BONCNO

BIT 7, 4L)
JR NI ,NOT_PASE_1
8ET 7, 0D ito prevent further passes thru inits
a iinitialize bytes within the data area here
RET ite LOAD_NEIT_NOTE
NOT_PASS_1: ;code for pass 2 or greater staPts haere

PRIORITY UPDATE - After calling SFX ¢ 0 and SFX ¢ 7, LOAD_NEXT_NKOTE will return
te PROCESS_DATA_AREA, which checks te see U lozding & new note hes czused &
change in either the channel used by the song (thiz happens with ncise notss

within a musical song) er the song number. If a change has occured,
UP_CH_DATA_PTRS will be called, which updates the data pointers on the basie of
prierity within the block of song data aress (see description of this routine

in ihe preceeding “UTILITIES™ section). Bince 2 specis] effect note will czuse

& change in the seng number (from whatever it was te £2), UP_CH_DATA_FPTRS will

always be called whenever an #f{ect ncte is loaded.

SECOND PASS OR CREATER - The nerxt time FROCESS_DATA_AREA is called Urem
SND_MANACER), which will be 14.7ms after PLAY_SOMCS heae gent cut the afisct’
fnitial data, % will detect the fact that an affect {5 using the seng data

ares (by seeing a2 SONCNO of 62) and will JUMP to SFX + 7, rather than calling

the frequency and attenuation sweep routines &5 !t would foer & normal note.

This will result in the first pass through the part of the body of the effect
routine that actually dees computetion and adjusts the data values within the

gats area. When the effect routine his completed its modificstions te the data
area and performs a RET, control s transferred back to SND_MANACER, which then
moves on to the next song date area to be processed.

This process will be repeated every 14.7mz mmtll the effect routine itself
decides that it's over and takes action to load the next note in the song.

WHEN AN EFFECT IS OVER = Prior to performing a RET, the effect routine must
decide whether the effect note has finished. 1If it has, NEIT_NOTI_PTR within
the data area must be set to the address of the nest note in the song and
SONCNO must be restored to byte 0. This can be done by calling the O/5 routine
LEAVE_EFFECT which does this. The address of SAVE_x_NNP must be passed in KL
and the address of SAVE_x_SONCNOC must be passed in DE. Finally, the effsct
should JUMP te EFXOVER, a location within PROCESS_DATA_AREA whizh would
nerzally be reached ence & note is over. The code there tikes care of loading
the next note in the song. Thue, the final code of each effect routine will

leok ag followm:

RET if affect not ovar

LD HL,(SAVI_xz_NNP) ;KL '» addr next note in song

LD DE,SAVE_x_50NCNOD ;DE := addr saved song number

CALL LEAVE_EFFECT ito restore them to bytes 0 = 2 in datz ares

JP EFIOVER ;in PROCESS_DATA_ARER to lcad scng's next note

The entire above described sequence is summarized in Figure 9.

® A sound eflfsct as a single sound

R stand alone sound effect can be lmplemented within the previously mentioned
structures simply By creating 2 single note song. The single note (5 the effect

COL!L‘.DVIIIﬂN SOUND USERS' MANUAL page

and would be followed by an end ef song code (or repeat code i{ you wish the
effact to ge on foraver).

Many stand alone effects may want to use more than ene tone generater channel:
e.g.. & special laser s2p that momantarily requires all thres tone gensrators,
e, as iz often the case, & white notse effect of particular character that
requires the noise ehannel shift rate to be modified by channeal three (see TI
data sheets). In thase cises, the effect's routine will have to modily data in
severa] data arezg Whenaver called. The song data aress used by such effects
are subisct to the nermsal prisrity structuze. E.g., L you wish & w$ ehannsl
effsct to temporarily sverwtite the harmeny and bass lines of & repeating song.
the effect must have besn assigned tweo data aress of higher priority {ordinally
later in the block of song date areas). If it is not necessary te maintain any
enderlying gongs, &n effect can share Sala &Teis ta sancarve RAM space, with'
the understanding that, as usual, songs of gounds that share the sime Eong date
arss truncate each other. A sulti-channel effect (2 ahord note, siy) may be
included 25 & note within o song, but, again, the song data area priecity
structure determines what will finally be heard.

Providing for & typical game's sound generatien neads might require eight song
data areas: four for an underlying, repeating song(s) (Lthree areis for the
three tone generators ané one for the neise genarator used for percussiomn
notes), ang four for higher priority, occasional sound effects (which would
temporarcily grerwcite the repeating songs. but truncate each other).

e Psaudo code listings pf main reutines

The f{ollowing two pages contain pseudo code descriptions of most of the OIS
sound routines. Seme romputational details are not shown, but all jumps,
calls, returns, pushes and pops are listed.

Terminology:
“.a" ig used as the sssignment gtatament, and “(xm” means the contents of the

memory location pointed to by EE, whers "rz" is KL, IX, etc.
The structure of each description ls &3 follows:

rer nime of routine ®¥°
the value expected fof passed parametars Gf any)

pseudo code description

of the routine, uninterrupted
by blank lines

RET

23

pEn INIT_GOUND FES
ML ® meer sf LET_DF_aiD_ARDEY
B = mewber of Song datd EFeRs sned by gmov

pel Ram werd pTR_TO_LET_OF _GM3_ANDES 0 value pussed L ML
pt ML 38 byse O 18 15T SBAg éala ared

1 (ML} '® imsetiwe Fode T a4 ll

WL cm ML ¢ 19

BIKT B1 (ses B arevas isariive)

(ML) = emd 8 satll area thde (L 3]

joad all 4 thannel data arsa peinierse with Lhe
asdr of 4 dusey inactiive ares | BRIRARTA)
SAVE_CTRL := OFFX

ALL_CFF. tora efd all & gesaraisrs édireetly
BET

mmants ECFD FFH

358 UP_CM_BaTA_PTES FEE

PUSH IX 12 sove it
get &L1 & =h data ptrs L0 & duwmey, igsciive Brol
CaLl PT_IX_TD _$1DaTa, ssng [§
Loor
IF bgte & imdicates the end 8¢ the 2ong deia erens JR BOeC
IF Byte O fPCAICALOS &R BELIVWE AFEE
set ML 1P ceérest 7 Lhis BFPE'S charnel date PeliRter
{3 »., HL '® adér PTR_TO 5 _ON_ 0 ¢ (CM# tais sres X 2))
PUSH T1X
POP BE (BT ‘= gddr byte 0 this srea)
tML1 e £, tHLel! = B
CNDIF
IxX = IX ¢ 10
CHRIF
ECPEAT LODP
DOWE POP IX te Pestlre QL
RET

EEz TONL _CUT =xm

gEz FREGC_SWCT® B3
$X » asdr byse 8 of 3 SEAQ SBLa ares

IF FETEP = § sete L2 ASL 1B be pwept
& = HLEK
KT a
RET I tleave 1 mese ever T flag SET!
WNLEW ‘= & (BtiEre dacromemtad MLEE)
RET (mete mss sver, I flag BESET)
ENBIF
pusSH IX, POP ML [ps KL 10 bgte B
ML :® ML ¢ effseL wilhif &SR3 RFes 8t Fr5V
CALL BLCLEM ts detreseat FPSV
17 2 flag SCT, FPSV has tined suwt
EaLl FRMTOLSH & Feisss (44 1]
a4 ‘= WLEM
BT A
RET 2 (leaws 17 sweep Bwer with I flag 8&7)
HLEM := & (gisre detrenshried MLE™)
peist KL =» FEER
a ;= FRTEP
CALL ABRR14 1o add FSTE? w» FRCE
EELET bit I ia b1 byte FREE
{ia ease &¢ svorflow frus addiilen!
gR OFFH s RESCT I fleg
CREIF
BT

gEx aTw_SuifP =X
1X = agér byte € 8¢ o eong dals EFed

BET with I flag SET 1f byte E=8
(4 9 , BELF ALA QL LB be Swest)
PUSM IX, PDP KWL (pt ML to kyie O1F
WL '@ ML 4 sffust wilhin dzia area of APV
caLL DECLEIN te decreseat APSY
IF 2 flag SET, APSV has timed Bl
CALL WESWTOLSX ta relsad argy
pt KL o ALEM te ef steps Lim ELm sweep)
call BETLEN i@ deercensi aLEM
TF T §lag REIET, swevp SEL Guif got
ATH s ATHN ¢ ASTEP
(4 bit sdd, sverflow igrored)
BR SFFW te RESET T flag
ELSE 2 #lsg is SET (sweep ig Bwer)
bgte 8 = O 30 imdirEie Bwesp peer
EMRIF
ENDIF
RET

1z o (PTR_TD_§_Om_ 31, L.0., IX pie i3 byle 0 duia area o seng far CNs

a g2t fer Cwr OFF code
mou C ey for CHMr pitensztios
msm D pat for OMe frequency

IF areq IMASTIVE
tarn gfd Onx
CLSE
CallL UPATWCTRL (send swl attlemsmtiss)
CALL WPFREL (send oui frerqueancy)
CHBLIF
T

ese PY_1X _TO _ScDaTa s=2
J = a sang mvsssr

W, o gear of LET_OF _SxD_ABDRE
ML = MWL =2

B cm 4 ¥ S0wCMQ
WL = KL ¢ B (L @

C "= (ML), D '= (HLeL)
rUSH B

::; IX (IX ® néer bgte O ®¢ Lhis song't €ats area)

, ML mps petais to $eBaTa's emiry is LST_OF _SKD_ABBRE)

