
3 BIG PROGRAMS FOR THE ADAM*

2 ADVENTURES WITH GRAPHICS
PLUS

ADVENTURE CREATOR

Design Y oar Own Adventure Games!

COPYRIGHT 1984 MARTIN CONSULTING

*T.M. COLECO, IND., INC.

CONTENTS

WELCOME TO FANTASY GAMER

INTRODUCTION TO ADVENTURING .

Mapping the game 1
Inventory management 1

Using FANTASY GAMER 2

ADVENTURE CREATOR • . . • . 3

Getting started . . . 3
Drawing your "world" 3
Building the story 4

ANALYZ I NG THE ADVENTURE CREATOR PROGRAM 6

Program listing . . • • . . . • . 7
General structure of the program 17

Memo ry map . . 17
BASIC program map . . 17

In it i a 1 i za t ion • 1 B
Description and feedback 20
Input • 22
The parser 23

How it operates . 23
Extra features of the parser 24
fancier input • . • . • • 24
Two more extra parser features 24
Assembly language listing of the parser 24

Error messages and condition checks 28
Verb action routines ••• · 29

Jumps to verb routines 29
Line 2100- Help 29
Line 2200 - Carrying? 30
Line 2300- Go • • 30
Line 2400- Get 31
Line 2500 - - Open • 31
Line 2600-- Examine 32
Lines 2700-3000 • 32
Line 3100- - leave 32
Lines 3200 - 3400 32
Line 3500 - - Use 32
Lines 3600-4100 33

- ii

Line 4600-- SAVE
Line 4700-- LOAD

GRAPHICS •..•
Using HPLOT for "building blocks"

Plotting your drawings
Drawing the scene
Using sprites
Sprite data

BIT PATTERN TABLE •
Sprite data strategies

Sprite attributes ••••
Sprite Color Attribute Table ...

Placing the sprites in a scene
Animating the sprites •.••..

The general principle •..•.
Assembly language listing for sprite
Problems with BASIC

BOMB SQUAD

THE VISITOR

Saving and loading
A bug in BASIC
Graphics clues
Getting help in the
A deadly warning

game

- iii -

control

33
34
34
34
3S
JS
35
37
40
42
43
43
44
4S
4S
46
47

49

49
50
so
50
so

51

INTRODUCTION TO ADVENTURING

Adventure games are like stories in which the player is
the hero, and the outcome of the story depends on the play
er's visdom and ections. Adventure gemes can be grouped into
tvo general classes--puzzle adventures end fantesy edven
tures (or interactive fiction). The game Bomb Squad is a
puzzle edventure; there is one set of solutions, and your
success at finding the solution vill depend on your logic
a~d dedu7tive reasoning. The Visitor is more of a story
v1th ver1able outcomes and more description and character
development. Your success in a fantasy adventure may depend
more on your understanding of an opponent's personality than
on deductive reasoning.

. To play the game, you read information about your posi
tion and stetus on the screen, and sometimes you must study
pictures presented graphically for clues. The game vill ask
you vhat you vant to do, and you will enter two-vord com
mands (a verb and a noun) like "kill dragon" or "charm prin
cess" or "go south".

Mapping the game.
It is essential to keep track of the world you are mov

ing around it by drawing a map as you go, noting objects in
various locutions, in case you should need them later. Ad
venture games consist of various specific locations in vhich
action takes place, so start your map with a rectangle rep
resenting your present location. Add rectangles ("rooms") as
you go.

Develop your ovn shorthand to keep track of how you got
from place to place, vhat objects are in each location and
vhich directions are not passable in each room. '

Inventory management.
In most games (including Bomb Squad and The Visitor)

you can carry only a limited number of things--partly de
p~nding on your physical.cond~tion. You never know vhat you
might need for any one s1tuat1on, so at times you will have
to drop things in order to pick up others. ~eep track of
vhere these things are, in case you need them again.

- 1 -

2

~ fANTASX GAH&B

This manual and tape cover three separate pro9rams . It
ld robably be a 9ood i dea to play the two 9ames a t ew

w~u Pb tore you study the material called Adventure Cr e
t imes e 1 · h 9ram in de -tor because once you start ana yz1n9 t e pro .
a . 1 ' at of the solutions to the 9amea will become obvious
!~~ ~p~'i1 all your fun . Also, if your 9oal is to write yo ur

wn adventure 9amea, you should have some feel tor how the
~layer perceives these 9ames without havin9 all the clues
ahead of time.

Adventure Creator consists of a "framework pro9ram",

"hl' ch ia not a game in its own right. It is desi9ned to let
· 1 f - The written in you fill in the deta1 s o your own game .

structiona tor Adventure Creator are pro~ably ju~t as impor
tant as the pro9ram on the tape, since 1ust hav~n9 the pro
gram won't do you much 9ood, without the tutorial mater ial
that explains it.

ADVENTURE CREATOR

Getting started

When you write an adventure game, you will be creatin9
a fantasy world in which you make up all the events and
rules. The world you create can be as fantastic or as real
istic as you want to make it. Many adventure 9ames use ma -
9ic, and will be up to you decide how much ma9ic is permit
ted.

First, decide on a theme for your story. You might
choose a particular time in history, or even prehistory - -and
have your player try to prevent the extinction of the dino
saur. Haunted mansions are big favorites, and some adven
ture games teach a little history by being factually accu
rate in details, while the player tries to do somethin9 like
help Julius Caesar avoid assasination. We're not sure what
the implications would be if the player succeeds.

Once you have a general theme, work out the actual sto
ry , which should be built around an objective--defuse the
bombs, find the alien ' s mother ship, retrieve the Ring from
the Lord of Darkness, or whatever. The course of your story
will always be built around this ultimate objective.

Then sketch out your world in a rough map. This stage
will take some imagination and many false starts, as you
think about your story line in relation to the place where
it occurs.

Drawing l'..2Y.("world"

The first step in making your story into an adventure
game is to transfer your sketched in "world" to a square
grid, like the one in the next figure. Of . course you can
make your world any size, but limitations of the computer ' s
memory put some limits on you, especially if you want to use
some memory for graphics and have lots of options in the
possible actions in the story.

The grid used in this example is 6x6, so we can have 36
locations or "rooms" in our game. Make your grid as lar~e
as possible, because you will want to write in lots of
notes, treasures and object names. You will refer to this
diagram many times as you plan story action and keep track
of which objects are in which locations.

- 3 -

Humber each location, starting in the top left corner,
as in the sample grid (which, obviously, is from Bomb
Squad). we find it clearest to start n~mberin~ at 1, rath~r
than o (as some games do). Use a pencil to lightly mark 1n
brief room names for each location and the exits possible
from each room. As - your grid drawing develops, you will be
able to darken in lines for exterior walls and to set off
such things as cellars and attics.

As you mark the entrances and e~its ~n each room, use
"the four points of the compass as direction markers. You
can use little arrows, as in the example grid. If you add
the interest of going up ladders and dovn stairs, etc., plan
routes carefully. Obviously, even going "up" is going to
require the player to go north, south, vest, or east. It is
a good idea to get used to always naming the directions in
this order, since ve will be using numbers to indicate di
rections in the game (north•l south•2 vest•l east•4). Some
of your routes may be one-vay (the door locks behind you; a
tunnel collapses after you go through it etc.).

Hake a list of your rooms with all legal exits from the
room, like this;

1. vine cellar S
2. TV room SE
3. patio WE
etc. for later use.

Building ~ JU..QI.y

Nov that your adventure world is mapped out, it's time
to get serious about our story. You need to plan what the
player can do in each room, and what objects will be needed
to do it. In the process of doing this, you will be build
in9 up a list of verbs to cover the actions needed and a
list of "gettable" objects (things the player can pick up)
and "non-gettable" objects that will be in the room to stay .
Keep a separate list of verbs and objects, and list the get
table objects ahead of the non-gettable objects in your ob
ject list. Eventually, you will want an object list that
looks like this:

Object number
1.
2.
l.

etc.

Object
keys
amulet
scrolls

Location
21
31

1

As you place (and perhaps hide) your props around the
environment , you will be thinking about what the player will
do with them in each location. If you do hide an object
(like the crowbar in the grass in Bomb Squad), you will have
to keep track of vhat is visible and what isn't. We will
show you hov to do this in our analysis of of the Adventure
Creator program. It will help a lot if you write in each
object on your grid diagram.

5

As you plan your game, keep your player in mind. The
actions, puzzles, and events should make some kind of con
sistent sense. Otherwise the game vill be impossibly frus
trating to play. Of course it's OK to use magic, if your
vorld includes magic, but be sure the rules can be figured
out. Random magic is maddening. 1.lso, try to anticipate
the verbs and nouns your player might use for various situ
ations.

wine
cellar

'"rv
room

room

JJ
garage ...

auto jack
tlrepump

E

J

ANALYZING THE ADVENTURE CREATOR PROGRAM

Once you have your story planned, you are ready to
start programming. The purpose of Adventure Creator is to
give you a "framework program" in which the hard parts of
the program are already done. Your main job will be to pro
vide the details of the "world" of your adventure, and per
haps to make up your own graphics scenes. This will still
be a complicated job, but it should be a fascinating pro
cess, in which you will learn a great deal.

The next section gives you a complete listing of the
"framework" program, and subsequent sections analyze the
program in detail. This is probably the best way to learn
programming. We are assuming that you already know some
thing about BASIC programming, so you might have to study
your computer manual or some other book, if there are de
tails of BASIC that you don't understand.

This "framework" program formed the basis for both Bomb
Squad and The Visitor, the two games on this tape, and we
will be using examples from Bomb Squad to Illustrate various
points. You can, ,of course, list out the relevant parts of
Bomb Squad and The Visitor if you want more detailed exam
ples.

We will now list the entire Adventure Creator program;
you will need to refer back to this listing as you read the
analysis of it. The analysis will make frequent reference
to the line numbers in the listing, as we explain each step
of the program.

- 6 -

1

1 LOMEll : 29650
50 v = 47: g = 18: rm = 34: b1 1: b2 z 1: b3 = 1: tl 30: t2 = 60: t3 = 90

d rS = " 1 " : t 1 = 4 : t c = 1
60 GOSUB 19900: REM set scene
65 GOSUB 8500: GOSUB 2160: REM initialize
70 HOR: CALL sr: TEXT: REM clear out sprites
YO OOSUi 500: R;;M feedback

101) DOSUB 160: REH input
110 GCSUB 700: REf: condition checks
120 GOSUB 2000: REii verb action routines
; 30 vOTL yo
159 h.": I·! ••u•1nput and analysis of input
160 i'Rll:T " 'rihet will you do nov?•: IllPUT • • s
170 1 F qS = " " GOTO 1 60 I q : q$ " qS+• "
240 pk = 27720
250 FOR 1 = 1 TO LEll(qS): POKE pk, ASC(HID$(qS, 1, 1)): pk = pk+1: NEXT 1
260 POl:B pk, ASC(".")
290 vO~UB 8630: CALL er: TEXT
410 vb = 0: ob = 0: CALL 27430
450 vb = PEEi<(27409): ob = PEEK(27410): vS = ""
455 lF ob < vn GOTO 490
458 ob = ob-vn: RESTOl1E
460 REllD aZ: IF a$ <> "load" GOTO 460
470 F' OR 1 = 1 TO ob: READ v$: NEXT 1
4 90 RETURN
499 REM •••••feedback
500 IF bi > 0 OR b2 > 0 OR b3 > 0 GOTO 510
505 HOME: PRIJIT " YOU'VE DOllE IT! You muet, of course, slip av113 quietly,but

507 PRil!T " you have the personal eatie
ook you"; t; " moves.": END

510 IF bi = 1 OR b2 = 1 OR b3 > 0 GOTO 516

faction of a job veil done! It

512 PRINT" Your job ie done! You didn't get them all, but the embassy is s
till there.We may call on you again.": EllD

516 HOME: GOSUB 7900

,il)
518 IF tl 0 TgEH PRillT" You're a little nutso.The dog has killed you.•: E

520 i'RIJIT" Visible exits are";
530 FOR l = 1 TO LEil(rS:(rm)): PRillT MIDS(rS(rm), 1, 1);
535 RE~TORE
537 HEAD a~: IF aS <> "load" GOTO 537
540 FOR 1 = 1 TO g: READ o<;

" .. . ' llEA'i l: PRlilT

550 IF 1(1) = rm llllD f(l) = 0 THEil PRINT" You can eee ";
560 NEXT 1: PRINT" "; m<;: ml= "~hat?"

0$; , "here."

600 IF rm • 34 THEii GOSUB 2160: GOSUB 6200
610 IF rm 13 TllEll GOS UB 2160: GOSUB 6100
620 IF rm = 8 TilEll GO~ UB 2160: GUSUB 6500

630 If rm,. 29 THEN GOSUil 2160: GOSUB 6400
690 RETURll
099 n E!·l .. •••condl tion checks

8

700 Ip ob = 0 THEN m$ • " That's silly.•
730 IF vb = 0 OR vb > vn OR (ob > 0 AND ob . < vn) OR w$ = "" THEN m$ = " You

an't '"+qs+••."
740 IF vb < vn AND ob > 0 AND ob <= g AND c(ob) = 0 THEN m$ ="You don't ha

•"+ws+•• ."
825 t = t+I
940 IP t > t1 THEN GOSUB 5100
850 IF t > t2 THEN GOSUB 5200
S60 IF t > t3 THEN GOSUB 5300
900 v j = vb: IF vb > 2 AllD vb < 11 THEN vJ • 3
910 IF vb > 10 AliD vb < 18 THEN vJ '• 4
~15I!'vb 18THEN vJ•5
o;,2.J :iF vb 18 AUD vb < 25 THEN vJ = 6
925 ; P v b = 2 5 T II Ell v J = 1
930 IF vb 26 THEii vJ = 8 .
935 IF vb 26 AND vb < 30 THEN vJ • 9
940 IF vb 30 OR vb • 31 THEN vJ • 10
945 IF vb 31 AND vb < 37 THEN v J • 11
950 IF vb 37 THEN vj • 12
955 IP vb • 38 THEii vj = 13
3o0 IF vb > 38 AllD vb < 44 THEN vJ • 14
%51Fvb=44TllEN vJ=15
9701Fvb 44ANDvb<49TllEH vj•16
975 IF vb • 49 OR vb • 50 THEN vj • 17
980 IF vb > 50 AtcD vb < 56 TREii Vj • 18
985 IF vb > 57 AND vb-< 66 THEN vj • 19
990 IF vb • 66 OR vb • 67 THEii vj • 20
992 IP vb = 68 OR vb • 69 THEN vj • 21
994 IF vb = 70 OR vb • 71 THEN vj • 22
996 IF vb • 72 THEii vj • 23
997 IF vb = 73 THEN vj • 24
999 R ETURll

1999 REM •••••verb action routines
2000 i F v j = 0 THEN RETURll
2005 IF tc > tl AND vj <> 11 AND vj <> 2 THEN 11$ • " You muet drop soweth ln

: i'. ETlf:ll:
2010 Oli vj GOTO 2100, 2200, 2300, 2400, 2500, 26QO, 2700, 2800, 2900, 30UO,

o, 3200, 3300, 3400, 3500
2020 :_.;; vj-15 GOTO 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4600, 4700
210J R~S!OR!: PRlllT • Words I know:•: hp • 0: mS ""
2110 R.OAD a:;l : IF 1aO <> "help" GOTO 2110
2120 ht:l.D a:;>: IF a$• "zz" GOTO 2160
213'.i !'Rll?T aS; " ,"; : we• wc+1: IP we > 3 THEN we = 0: PRillT
2140 np = hp+1: IP hp • 64 THEii PRillT: hp = O: GOSUB 2160

2150 GOTO 2120
2 160 FRillT: INPUT" Pueh return to continue."; a$: RETURH
2200 PRillT" You are carrying:"; : RESTORE
22 10 hEAD aS: IP a$ <> "load" GOTO 2210
2220 FOR 1 = 1 TO g: READ o:;l: IF c(l) = I THEN PRINT o$; •,•;
22 30 I< EXT 1 : m :0 = "" : GOTO 2 1 60
2300 d = 0: IF ob = 0 THEii d = vb-3
2303Irob 19THEN d I
2306 IF o b 20 TH Erl d = 2
2309 IF' o b = 21 TH Ell d = 3
23 12 IP ob = 22 THEii d = 4

9

2344 !F' rm = 34 ANO (d = 1 OR d = 4) AND f(45) O THEN m$ • The guard won't
l"!t you pass .•: 'lETlfRll
,~70 f(19) = 0: rl = LEll(rS(rm))
27 ,2 ~n~ 1 = 1 TO rl
~~1.1 u t. = nro:(r ~; (rm), 1,
2~71.J lf(uS "ll"AHDd=
:!)18 IF' (u $ "8" Ai/D d
2~'30 IF' (u$ = "ll" AllD d
?~'32 IF' (u$ = "E" AllD d
2334 !:EXT l
;?3~6 mS="OY.."

1)
I AllD f (19)
2AllDf(19l
3 AND f(19
4ANDf(19

0) THEii

0
0) THEN

) THEN

rm =
rm "
rm

0) THEN rm

23tl'3 IF' f(1 9) = 0 THEii m$ "Can't go that YBJ'!"
23C)IJ 1 F d < 1 TrlEll m$ = " Go where?"
23 '.n n ?:T URJI

r m-6: -f (I 9)
rm+6: !(19)
rm-1: f (19)
rm+1: f(19)

2400 IF oti > F. THEN mS = " You c an't get •+vS+".": RETUTIN
2~20 IF l (ob) <> rm TH Eii m$ = " It Isn't here.•
2430 IF f(ob) <> 0 THEii mS = " What "+wS+"?"
2440 IF' c(ob) = 1 THEii mS = " You already have it."
2452 IF tc >= tl TllEll m$ = " You can't carry more than "+STfl$(tl)+"

": RET UH!f
things.

24 GO IF' ob > 0 AllD l(ob) = rm AJID f(ob) = 0 THEN cl.Pb) = 1: l(ob) = 38: mS. "
QC. You have th e "+wl+". ": tc = tc+1
2.170 If' q $ = "talce pictures " THEN m$" •using what?"
24<rl RETUR :~

AllD c(2) = 0 AllD c(3) = 0 AUD ob = 47 Til Ell mS = "
ope n it.": R ETlfRN

2roO<l i f' rm = 30 AllD c(1) = 0
You don't have anything to
2530 IF' rn; = 30 TllEll m$ = " The door le open. You had the tools for the Job."

: r :;l (30) = "llSW"
25<n fl ETUR:;
?6n<J If' oh <= v AlllJ (l(ob) rm OR c(ob) = I) THEN mS " . Nothing epeclal--jus

ta " + w~+ " ."

~630 IF rm = 19 AllD oh• 36 THEN m$
2640 IF' rm = 25 AllD ob = 39 AND !(2)

''" i n the g rass!": f(2) = O
2f.9o R C'!'IJRll

" That's disgusting!"
0 THEN m$ = " You've discovered a crowb

10

2700 IF ob = 12 AND c(12) • I TUEN a$•• It says, 'Moveable turnlture le dece

ttve. '" 27}:> IP (ob = II OR ob • 12) AND c(l I) • 0 AND c(l2) • 0 TilEN 11$ = " Uow can y
ou read what you're not holdlng?"

2799 RETURN
2000 IP ob =II AND c(l5) •I THEN m$ ••It says,'The bookc&Be moves. The

mbasaador wlll dle'"
2820 IF c(l5) • 0 THEN •S • • You don't have the codebook."
2900 IF bi = I AND rm • 15 AND (c(6) • I OR c(l7) • I) TUEN mS = " Good wor l<.

'!he a.cibaseador ls sate tor now.•: bi • 0
2940 IF c(6) = 0 AllD c(l7) • 0 THEN mS • • You can't defuse anytbln& wit h no

nife or tools.•
2950 IP rm = B AllD !(26) • 0 THEN mS • • A crate's ln the way.•
2999 iit:TURll
3300 Ir' rm = 30 AllD (c(3) • OR c(2) •I) TUEN mS •"The cell le open .": r S

30) = "llSW": t(46) = 1
}010 IF c(3) • 0 AND c(6) • 0 AND r• • 30 THEN 11$ = "You have no keys or c r ow

ar."
3099 RETURN
3100 IF c(ob) • 0 TREN •S • •You're not carrying It.•
3110 IP c(ob) = I THEN c(ob) • 01 l(ob) • rm: mS • • Done.•: tc = tc-1
3199 RETURN

3
3

2
200

10
IIFF

0
obb -=- 5

5
AANNDD cc(

5
5) ••

0
1 TTBUEENN m$ a • It's llt.•: !(5) • I () m$ • • Jou don't have the tlBBhllght.•

3299 RETURN
3
3

3
3

0
10

0 IIFF o
0
bb: 5

5
~INIDD cc(5

5
) =.

0
1 TTBREENll m$ • • It's turned ott."

- ,. () m$ • • Jou don't bave the !lllBbllght."

3399 RETURN
3400 IF rm = 15 AND ob • 35 THEN 11$ • • What good did that do?She'a u nconoc

ous now.•: f(35) • I
3499 riETURN
3500 IF rm = 8 AND (ob = I OR ob • 2) TUEN mS • •Great.The crate moves . The r

'e the bomb!": f(26) • I
3510 IF c(ob) = 0 THEN a$ • • You don't have lt.•
3599 R£TURli
3600 IF rm • 8 AND ob = 26 AND f(26) • 0 TUEN mS" • It's extremely heavy . Wh
11111 yor. use to move 1 t?"
3605 IF rm = 29 AllD ob • 41 AND f(ob) • I THEN m$ = " It's already ~oved."
3610 IF rm = 29 AllD ob • 41 AIID f(ob) • 0 THEM m$ = " IT HOVE!ll Stalra l ead d

vn!": f(41) •I: r$(29) •"WE"
3699 ii C':URll
3700 Ii' ob = 9 AND c(9) • THEN mS • • Jou doze ott tor 20 precious ml nut
!":t=t+IO
"H'J9 ~:C:TUilll
3'3:l0 i F o b = 4 4 A!ID (bi • I AND rm • I 5) OR (b2 = I AllD rm = 8) OR (b3 = I A:I

I'!:= 24) TUEii 1:1S = " Don't do that!": GOTO 6000
3810 IF rm = 30 AND ob = '\6 THEN mS • • I's so strong. What wlll you us e? "
3899 RETURN

II

43 GOTO 3902) 900 IF rm = 30 AllD f(46) = I AND ob
39 10 IP rm = 15 AND ob 35 THEN mS

:n,you see a bomb"
" She ie charmed. Ae you Inspect the roo

3'.'9 3 R!:TUTifl
400J IP rm = 14 AllD ob = 34 AND (c(4) = 0 OR c(14) = O) TUEii m$

have a nything he wants."
40 10 IF rm = 14 AND ob = 34 AND (c(4) = 1 OR c(14) = 1) THEN m$
seems to like you.": f(34) = I: c(4) = O: c(14) = o
40 99 RETURll

• You don't

" Clever. lie

~dl OO l F f(20) = I MID rm = 34 AllD f(45) = 0 THEN m$ = " Davious but effective.
_he coo- promising pictures got him.": f(45) = 1
411 0 I!' f(20) = 0 AHO rm = 34 A!ID ob = 45 AND f(45) = O THEN m$

you u se? "
419:1 ".ETUnN

" What will

(20v l F rm = 11 AJ D ob = 18 AllD c(l8) = I THEN mS = " Ue'e fooled and lets you
pas c• ": f l 30) = I
4:?9? P. ET!ffil :
4600 IJ;PUT " Tal?e or disk ready?(y/n)"; a$: IF a$ <> "y" THEii RE:TURll
46 10 PillllT Clll1$(4); "open bombgame,d"; drS
4620 PRiflT CllRS(4); "write bombgame"
46 30 PRillT rm: PRlllT bi: PRINT b2: PRINT b3• PRINT tl • PRINT t2• PRINT t3: PRIM

T tl: PillNT tc • • .
46 40 F OR 1 = I TO 36
4650 PRI~T r$(1)
46 60 r; r: Y.T l
4670 P O~ l = I TO v
4675 l'f<IllT f(l)
4680 liEXT l
468 5 FOR l = 1 TO g
46A8 PnI!IT 1(1): PRINT c(l)
4690 1' EXT 1
4695 PRlllT CHRS(4); "close bombgame d"• dr$
4699 RETUTifl ' '
470 0 lHUT " Tape or disk ready? (y/n)?"; a$: IF aS <> •y• THEN RETURll
4710 r!llllT Clln:V(4); "open bombgame,d"; dr$
4720 PnlllT CllR 0 (4); "read bombgame"
4730 IflPUT rm: lflPUT bi: IllPUT b2: INPUT b3: IllPUT tl. INPUT t2: IHPUT t": I!IPU

T tl: INPUT tc • "'
4740 FQR l = 1 TO 36
4750 Ill~UT r$(l)
4760 Ii EXT 1
4770 FOR l = 1 TO w
4775 1UPUT f(l)
47aa 1. c:xr l
47'l5 FOP. l = I TO g
47a8 lHPUT 1(1): lflPUT c(l)
4790 NEXT l

4'795 PRINT CUR$(4); "cloee bo•bga.me,d"I dr$
4799 rt ETURN
5100 ilETURN: REH du.mll\f unusual action routine
5200 RETURN: REl4 dwnmJ routine
5300 l\t:TURU: REH dummy routine

12

539':1 ri E:l ••••• graph I CB
6000 HPLOT O, 12 TO 60, 40 TO 79, 90 TOO, 156: llPLOT 60, 90 TO 200, 90 TO 199
39 TO BO, 40
6010 nPLOT 200, 40 1'0 250, 15: HPLOT 200, 90 TO 250, 150: RETURN
6030 dPLOT x, y TO x+30, y TO x+29, y+20 TO x-1, y+l9 TO x, y: UPLOT x+1 5, y T
x+l5, y+20: llPLOT x, y+IO TO x+30, y+10: RETURN
6040 !!PLOT 130, 90 TO 130, 60 TO 146, 61 TO 145, 90: RETUHll
6050 iiPLOT x, y TO x+25, y-5 TO x+24, y+30 TO x-1, y+20 TO x, y: UPLOT x, yt11

r ; x+25. y+l I: HPLOT x+l I, y-2 TO x+l I, y+23
6055 n ~'i'!IR:I
610:: RETUHll: RE~\ dwnmy graphics routine
6200 ll~R
6203 iiCJLOR = 12: x = B: y R 22: GOSlfB 6030: x = 60: 1 = 22: GOSUB 60}0 : Jl

75: y = 22: GOSUB 6030
6205 x = 60: y = 3: GOSUB 6030
6210 ilCOLOR = 14: UPLOT 0, 70 TO 255, 70: HPLOT 120, 70 TO 120, 45 TO 14 3, 46

T0 142, 70: HPLOT 131, 46 TO 131, 70
6220 llPi.OT 70, 15B TO 120, 70: HPLOT IBO, 15B TO 142, 70: UPLOT 4B, 15B TO 35,

1 :?O
6230 !iCOLOR 2: BPLOT O, BO TO 12, 77 TO 35, 65 TO 34, 120 TO 27, 119 TO 2B ,

93 TO 0, 94
6250 POKE ea, 95: POKE ea+l, 160: POKE ea+3, 14: POKE ea+16, 79: POKE ea+17, 1

0: POKE a a+60, 79: POKE ea+61, 1 60
6255 POl:E ea+64, 79: POKE ea+65, 160: POKE ea+52, 95: POKE ea+53, 160: POKE a

56, 95: POKE ea+57, 160
6260 POKE ea+44, 101: POKE ea+45, 10: POKE ea+48, 101: POKE ea+49, 10: POKE a

24, 50: POKE ea+25, 200
6265 POKE ea+32, 64: POKE ea+33, 200: POKE ea+2B, BO: POKE ea+29, 50
6270 CALL ar
6275 IP f (45) = 1 THEN RETURN
62BO POR 12 = 1 TO 2: POR l = 95 TO 79 STEP -3
6263 IF l = 95 TUEii FOR lp = I TO 4: GOSUB 7600: NEXT lp
6266 POl:E ee+52, 1: POKE aa+56, l: CALL er: GOSlfB 7600
6290 llEXT 1, 12
6295 POl:E aa+52, 95: POKE ea+56, 95: CALL er
6299 R ETURtl
6300 RETURll REl1 dummy graphics routine
6400 ii<:Tlfttli llEil du"1111y graphics
6500 iit:'!'Ullll Rt:M dulllJllY graphics
779'j r. .:: : • •••time delay routine
7-'lOJ i' :Ji: de= I TO 100: llEXT de: RETURN

13

7699 REM •••••room descriptions
7900 ON rm GOTO 6010, 6020, 8030, 8040, 8050, 8060, 8070, 8080, 8090, 8100, 811

0, 8120, 8130, 8140, 8150
7920 ON rm-15 GOTO 8160, 8170, 8180, 8190, 8200, 8210, 8220, 8230, 8240, 8250,

1'260, 8270. 82130. 13290. 8300
7930 ON rm-30 GOTO 8310, 8320, 8330, 8340, 8350, 8360
13010 PRINT" room I": RETURN
8020 PRillT " room 2": RETURN
'!030 PRINT " room 3": RETURN
80 40 PRINT" room 4": RETURN
8050 P il IHT " room 5": R ETURll
80 60 PR!llT" room 6": RETURN
8070 PR!WT" room 7": RETURN
' ;(JA(' IP b 2 2 THEii PRillT" No vonder you heard an explo- elon! Thia storage

rrio,. i ~ 11 vreck.": RETURll
,3()0 4 i' :l r :;T" A s toreroom with big crates.": RETURll
H090 PRI~T" room 9": RETURN
f:l ! OV PRillT" room 10": RETURN
13 110 Pil!llT" room 11": RETURN
8 120 fRIYT" room 12": RETURN
8130 PRillT " room I 3": RETURN
8 140 IF !(34) = 0 TllEll PRINT" That dog vlll tear JOU to bits If you try to er

oss thi s yard."
8 14 2 1 P f(34) = I THEii
U149 KETUHll

PRINT" The dog p~acefully munches hie food."

Hl ?O IF' bi = 2 THEii PRINT " Smoke and the smell of death. The ambaeeador'e au
lte ls wrecked.": RETURN
8151 P~INT " You have burst In on the
13152 IP f (35) I GOTO 8 I 58

ambassador herself."

9154 IP !(35) = 0 AllD bi = I THEN
OlJt !"
0156 IP f(35) = 0 AtlD bi = 0 TREN

nv e returned to her suite"

PRINT" 'Vho are you?' she challenges

PRINT " She velcomee you but asks vhy

a1 5a IP f(35) = I THEii PRINT" She's still unconecloue."
13i 53 P.J::TU!l ll
8160 PR HIT "
8170 l'RlllT "
8180 PRillT "
8190 PRillT"
0200 PR rnr "
8210 PRillT "
t3220 r R IllT "
8 230 PR IllT "
82 40 PRillT "
8250 PRUIT "
9 260 PR I!IT "
8270 PH IllT "

room 1 6":
room I 7":
room 1 B":
rooml9":
room 20":
room 21":
room 22":
room23":
room 24":
room 25":
room 26":
room 27":

RETURN
RETURll
RETURN
RETURll
RETURN
RETURN
RETURN
RETURll
R ETURll
RETURN
RETURll
RETURN

'Get

JOU h

!1200 PR lllT " room 26" : RETURN
6290 PRINT " room 29": RETURN
6300 PRillT • room 30": RETURN
6310 PRillT • room 31": RETURN
6320 PRINT • room 32": RETURN
8330 PRINT " room 33": RETURN
8340 PRINT " room 34" : RETURN
8350 PRINT• You're at the door ot the guard houee.": RETUHN
8360 PRINT • room 36" 1 RETURN
8499 REH •••••inltlallze
8500 DHI c(11), 1(11), t(11), r$(36)
8600 DATA 200,200,0,09,200,200,4,09,200,200,4,14,200,200,8,14,200,200,1 6,14,

c,200,20,6,200,200,24,3,200,200,28,12
9615 DATA 200,200,32,06,200,200,36,06,200,200,40,14,200,200,44,04,200, 200,46

5,200,200,52,10,200,200,56,9,200,200,60,6
86 25 DATA 200,200,64 ,09,200,200,68,15,200,200,72,15,200,200,76,13
8630 sa = 29500: RESTORE
8640 FOR l " 0 TO 79: READ a: POKE ea+l, a: NEXT 1
8650 IP ret = 1 THEN RETURN
9660 r et = 1
8750 p k • 27850
8760 READ a$: IP a$ = "zz" GOTO 8790
9765 11num = 11num+1: IF a$ c •autojack" THEN vx = 1
8766 IF vx = 0 TllEN vnwa = vnu11>+1
8770 FOR l = 1 TO LEN(aS): POKE pk, ASC(MIO$(a$, 1, 1)): pk = pk+1: ll EXT l
R700 POKE pk , ASC("."): pie" pk+1: GOTO 8760
8790 POKE pk , ASC(")")
9115 [) ATA help ,carrying?, go, II ,S, 11, E, valk, run,exl t ,get, take, grab, 11 f t, ee1 zed

k, steal
9150 DATA open,examlne,look,lnepect,eearch,lnvestlgate,explore,reud,decode
9155 DATA detuse,dlemantle, dlearm,unlock,pry,drop,throw,dump,relaase , leave,

llght",extlngulah
9200 DATA t l ght , punch,klck,attack,hlt,uee,move,pueh,ehove,pull,coneume,drln

reak,bend,epllt,ahatter,deetroy,11reck,burn
9240 DATA talk,persuade,charm,threaten,convlnce,!latter,decelve,plead
9250 DATA !eed,dlatract,brlbe,blackmall,ehov,"tlaeh ", aeve,load
3310 DATA eutojack,crovbar,keye,meat,!leahllght,tool s , camera,money,v lne
9320 DATA rope,letter,"book ",matchea,bones,codebook,tlrepump,knlfe, budge,n

h,eouth,west,eaet
9360 DATA televlelon,pool,turnace,crate,bed,klng,turnlture,alde,maps ,11 indow

nee
9370 DATA dog,ambaasador,garbage,stalra,veapone,grass ,ataff ,bookcau e , cur,pr
ner,bo~b,guard,door,room,zz
9510 DATA 175, 14,0 , 50, 17

1
107,50, 18, 107,50 , 19, 107,50, 15, 107,50,16, 107 ,33,202

8
9515 DATA 237,99,20,107,58 , 16,107,60,50,16,107,33,52 , 108 ,237,91 ,20,1 07,26, 7

1

9520 DATA 254,94,202,92,107,254,93,200,35,19,195,77,1 07 , 19,237,83,20, 107,I
!!O'l

9525 DATA
,1 07
'.'530 DATA
9535 DATA

,I 6, 10 7
~54 0 UATA

18 ,1 07

IS

14,0,33,52 ,108,6,0,235,167, 237,66,235,14,0,26,71 ,126,254,94,202,150

50,22,101,120,254,94,202,63,107,50,22,101,184,202,145,101,33,52,108
19, 195, 105, 107,35,19, 12, 195, 114, 107,58, 17, 107,230,255, 194, 180, 107,58

50 ,17,107,33 ,72,108,235,167, 237,82,235,123,50,15,107,195 ,63,107,58,

~:~6 1 ~~· ;~ 230,255, 194, 195, 107,58,16, 107,50,18, 107, 195,6.,,107,58,16, 107, 50,19, 1

9570 pk = 27430
?~90 R ~ A D a : IP a< 256 TREN POKE pk, a: pk = pk+1: GOTO 9580
9b l ~ :l 4TA 3 3 , 25,18, 20, 7,12,00,12, 1, 5,29,29, 4,19, 5,D,20,17
961~ DATA 0,0 ,0,0, 2 ,4,7, 8 ,10,10,10,11,12,18,0,14,15,19,22
0 614 ~ AT A 24, 25, 26 , 29, 33,36,24,34,30,0
~G20 FOR l = 1 TO w: READ 1(1): HEXT l
'.1 1~·~0 0 !1 ! A ~ . :1~ , w~ . ';'/~ . st.'E ,W
057) J ATA :ir: , r:~w . ss , S W,tlS E, SW
')G!31 D ~ ":' A :>:. , 11s;1 , r: E, !IS W, llSE ,UW
0E90 D ~ T A llS . r: s..:, s ~: , 'ISE, lfW ,s
9700 DA':'A ll S, ·r,llE,llSllE,W,!IW
97 10 UATA llE,W!: ,WE,tlWE,W,N
9720 FOR l = 1 TO 36: READ r$(1): NEXT l
'.'760 f(2) • 1: f(43) = 1: c(7) = I
?30 1 DATA 255,255, 255,255, 25 5,255,255,255,255,255,255,255,255,255,255,255
9902 UATA 255 , 255, 255 ,255, 255 ,255,255,255,255,255,255,255,255,255,255,255
9q04 DATA 255, 255, 255, 255,255,255,255 ,255,255,255,255,255,255,255,255,255
9905 DATA 255 ,255 ,255, 255,255 , 255,255,255,255,255,255,255,255,255,255,255
9907 DATA 255,255,255, 255, 25 5,255,255,255,255,255,255,255,255,255,255,255
9909 DATA 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255
99 10 DATA 255,255,192,192,192,192,192,192,192,192,192,192,192,192 255 255
99 11 DATA 255 , 255,3, 3 ,3,3,3,3,3,3,3,3,3,3,255,255 • '
'.'9 13 DATA 255, 25 5,128,128,128,128,128,128,128,128,128,128,128,128,128 255
99 14 DATA 255, 255,1,1,1,1,1,1,1,1,1,1,1,1,1,255 '
99 16 DATA 255 ,191 , 22 3,224,239,239,239,224,223,128,239,239,239,224,223,128
'.'9 17 DATA 255 , 253 , 25 1,7, 247, 247,247,7,251,1,247 1 247, 247,7,251 ,1
'.'9 19 DATA 3,7,13, 55,63 ,127,251,239 ,25 5 ,247,253,127,59,15,15,3
9920 DATA 22 4, 240 ,252,25 2 ,126,237,255,247,255,191 ,251 ,254,252,252, 240,224
'.'J22 DATA 9,4 5 ,180 ,82,86,112,41,237,228,179,211,87,123,63,55,23
'.'92 3 DATA 90,220,153 ,166 ,166,77,1 25,136,190,246,83,215,204,200,246, 214
Q925 DATA 25,1 5 ,7, 3 ,2 ,3,3,3,3,3,3, 3 ,3,3,15,124
'.'926 DATA 136,152,240 ,224,96, 224,2 24,224,32,224,224,224,224,224, 248 ,1 58
9928 DATA 255,248 ,240 , 22 4,2 24,224, 240 , 224,192,192,192,192,192,128,1 28 ,1 28
9929 D,\TA 255 ,15, 31,127,127,15,3,3, 3 ,3,3,3 1 3,3,3,3
99~ 1 DA TA 0 ,0 ,0 ,0,0,1, 2 ,13, 59, 54,61 ,63,63,63,62,60
9932 DATA o,o,o,o ,o ,12q ,128 ,12a ,12a ,12a,120,128, 31 ,50 124
9~34 DATA 0,0,0,7,3 ,1 6 ,16,63, 63,76, 204,248,255,0,0,0 '
9?35 iJ ATA 0 ,0 ,0,240 ,8 , 6 ,6, 252 , 252 , 50 , 51,31,255 ,0,0,0

99J1 DATA o o,o,o,o,o,0,0,0,50,48,3,0,48,48,48
9930 DATA 4:4,4,4,4,32,80,0,0,76,140,224,0 , 12,12,1 2
99 40 DATA 0,3,7,6,12,12,12,108,108,60, 28,1 2 ,0,0,0,0
9~ 41 [J ATA 0,25 2 ,252,14,6,6,6,6,6,7,7,6,0,0,0,0
9:<0 I: A'l' A O,O,O, l , 3 , 3,3,3,1,0,0,0 , 15 , 15, 25, 49
99 44 CA?A 0,0,0, 240,88,248,248, 16, 22 4,192 , 22 4, 224, 252,252 , 246 , 243
99 4'5 DA TA 0,3,4,4,l ,0,0,1,0,0,0,31,63,51,99,195
9947 DATA 0, 240,8,4,0,0,0,224,0,0,0,28, 254,242 , 243 , 243
9949 DA TA 0 0 ,3, 3,6,7,7 ,4 , 1,0, 1,0,0,0,0,0
9~50 DATA o:o,240 , 248 ,216,248, 248,16, 22 4 , 192 , 224, 224, 0 ,0 , 0 ,0
9J52 ~ ATA 0 0, 0 , 0 ,0,8,8 , 24,104, 25 4,31 ,31 , 63,100,68,194
0,?53 IJ AT A o :o ,0 ,0, 0 ,0 ,1, 1 ,1 , 62 , 254 ,255, 254,14,9,17
9- 5_5 D_ A,';_ A, O 0 0,0, 0 ,8,8, 24, 249 , 62 ,111,14 3 ,1 5 ,14, 20 , 18
':::?G ..i n '. n o :o:o,0 ,0 ,0,1,1,1,62 , 254 , 25 4, 25 5 , 31,18, 20 .
?'55 ~~!~ 0 0 15 ?4 46 , 96 , 255 , 248,232 , 230, 194 , 198, 2 32 , 22 4 ,248 , 255
: 1 ~•5::' 1J A~ A O :o '. 25S ~3 : 7 , 13 , 249 , 249 , 57 , 57 ,25 ,25 , 57, 58, 252 , 248 , 256
?~JL J d • 28850: l • 0

16

9917 H!::l. D a: I i' a= 256 GOTO 10030
9nc,5 1' 0i'E s d ~l , a: l = l+I: GOTO 9997

1;101 Q D Ai A 1-t , 226 , 6 , I , 205, 32 , 253,58 ,2 4 , 252 ,253 , 33 ,80 ,00 , JJ , 178 , 112, 17 , 00 ,00 , 2

j~;2~56 ATA 5A , 23 , 252 ,253, 33 ,20 , 00, 17 ,00,00 ,33,60,115 ,205 ,44 , 253 , 201 ,2 56
13330 s r • 29600 : l • 0
11040 READ a : IF a • 256 GOTO 10 200
IOJ50 !' Oi:E s r +l , a : l = 1+1: GOTO 10040
!0200 fl ~ TUll J ;
19-JO.:. :iOl·;E: PRill T TAB(6) ; "OPEllillO DESCR IPTIOll"
1931 0 PRlllT: PRillT • deecrlptlon . ": PRillT " Pl ease valt a moment . ": RETUHJI

17

General structure of ~ program

In the ADAM, BASIC uses up memory up to memory location
27407 . In Adventure Creator, ve have to reserve a part of
memory for tvo important functions that are handled in ma
chine language, rather than BASIC, because machine language
is so much faster. The area from 27407 is reserved by the
command LOMEM:29650. Thus, the area from 27407 to 29650
vill not be used by BASIC.

Each of these program parts vill be explained in detail
later. In this section, ve vill just locate them for you.

The PARSER analyzes the player's input to see which
verb and noun vere used. It takes memory from 27407 to
27849. (Actually, a little memory is left over unused to
make it easier to expand the program later if desired).
From 27850 to 28849, the vocabulary understood by the pro
gram is placed. 28850 to 29490 hold . the sprite data that
define the shapes of the 20 sprites used in the program.
29500 to 29580 hold 80 bytes that define the attributes of
the 20 sprites--4 bytes per sprite. rrom 29600 to 29640 is
the machine language routine that controls the sprites.

~ program !!!.!!..P·
This listing uses program line numbers.

1- 150 overall supervisor section
160-499 get input and analyze input (parser)
500 - 999 description and feedback
2000 - 4799 verb action routines
5000-5399 unusual actions routines (explosions in

Squad)
6000 - 7000 graphics
7900-8400 location descriptions
8500-10010 initialization routines.
19900-end set opening scene

Bomb

Note that the general strategy is to place often used
parts of the program near the beginning. Th i s is because ,
when BASIC is looking for a subroutine or a place to GOTO ,
it starts at the beginning of the program. The extens i ve
initialization and the opening description are only used
once, so they're at the end. This greatly speeds up the
program and makes it more fun to play.

18

Jnitjaliutjon

There are many things to be done before the game is
ready to play. Jn Adventure Creator, this takes about 13
seconds. first the opening description comes . up on . :he
screen so the player has something to read while wa1t1ng
for th; initialization to finish. This is accomplished by
line 60.

Line SO initializes a number of variables necessary for
the game. w•47 sets the number of objects or nouns. g•18
sets the number of "gettable objects". ' rm•l4 sets the room
number for the player's location at the start of the game.
b1•1 b2•1 b3•1 are unique to Bomb Squad, but they illustrate
a programming method. If bi, for example, equals 1, we . knc;>w
that the first · bomb is still ticking away somewhere; 1f 1t
has been set to zero by the program, the bomb has been de
fused; if it has been set to 3, the bomb has exploded . t1•30
t2a60 tl•90 set time limits in Bomb Squad. The program
keeps track of "time" by counting the number of moves made .
Thus it is easy to check if t1 (time 11) has been exceeded
and take the appropriate action.

Still on line 50, dr$•1 determines which storage device
is used for saving games. As long as dr$•1, the program
will SAVE to and LOAD from the tape drive. If dr$•5, the
disk drive will be used. tl•4 sets the player's "total
load"--the number of objects that ea~ be carried. tc•1 is
the number of objects actually being carried at the ~oment .
It is set to I here, because the player starts out with the
camera in Bomb Squad. You might want to change it to zero,
depending on how your game starts.

Line 8500 reserves room for 4 arrays. If you don't un
derstand arrays , you should study a book about BASIC, but in
general, an array is a block of mo;:mory . that operates like
numbered boxes . The OIH command, d1mens1ons or reserves the
arrays you want . .

Array c(w) will keep track of what the player IS carry
ing. The variable w is the number of nouns or objects in the
vocabulary; w was set to 47 in this game, back in line 50 .
When a program is RUH, all variables are set to zero, so
there is no need to set any of the numbers in clwl, unless
the player is carrying something to start with. In Bomb
Squad , the player starts out carrying a camera, so in line
9760, you will find that c(7) is set to 1. This is bec~use
the camera is item 17 in the vocabulary of nouns (see lines
9310 to 9380). Notice that only the first 18 objects are
things that the player un carry--these are "gettable" ob
jects, so only c(l) through c(18) will ever actually be used
for items being carried, but we still reserve space in the
c(w) array to check in case the player says something like
"throw car".

The array l(w) keeps track of the location of each ob
ject. In lines 9610-9620 we will set each value in array
l(w) depending on which room each object is in. For exam-

19

ple, if the first object in our object list is "autojack"
and it starts out in the garage, which is room 33, then 1(1)
will be set to 33. During play, if the player picks up an
object, the location of that object will be set to zero.
Later the player may put the object d~wn, so we will keep
track of where the object ls by changing its value in the
l(w) array.

The array f(wl keeps track of "flags" for each object.
These flags make the game much more interesting. A value of
zero indi7ates that the object is in its normal state. For
example, 1n Bomb Squad, the ambassador is object number 35.
The game starts with f(35)•0. If the ambassoador gets
knocked out, f(35) is set to 1, indicating a changed status.
As ~no~her example, the cro~bar is object number 2. At the
beg~nn1ng of the game, it IS hidden in the grass. f (2)•1
until it becomes visible: then f(2) is changed to zero, be
cause that would be a "normal" state.

.Array r$(36) stores the visible exits for each room.
In lines 9660-9720, each location in the array is filled.
For example, the visible exits for room 34 (the starting lo
cation in Bomb Squad) are north, west and east. Thus the
34th value (in this case, the 4th piece of data i~ line
9710) is NWE.

Lines 8600-8660 POKE into memory, starting at memory
location 29500, the 80 attributes of the sprites. These are
the fir~t of m~ny pieces of. data to be POKEd into memory.
The.sprite a~tr1butes are firs~ bec~use we are going to be
poking them into memory many times in the program--in fact
each time we set up a new graphics scene. Look at lin;
8650. The first time through, the variable "ret" will be
zero (all variables a~e set to zero when a program is RUN),
so this line vill be ignored. However, the next line sets
"ret" to 1. Thus, we can now use lines 8630-8650 as a sub
routine that POKEs In the original sprite attribute data.
When we analyze the graphics routines, you will see the com
~and GOS~B 8630. This sets up 20 sprites in a location that
is ~ot visible on the screen. Then with the screen clear of
spr1t7s, we can move th7 ones we want onto the screen by
changing some of the attributes. (As you will soon see, the
first two numbers of each set of four places the sprite ini
tially at coordinates x•200 and Y•200, which is off the
screen.)

Lines 8750-8790 POKE the next data into memory. This
data is the vocabulary of the game. The words will be POKEd
in starting at memory location 27850. Each word in the data
is read and then POKEd into memory, one letter at a time by
line 8770. At the end of each word, the character •A• Is
POK~d in because the parsing routine needs some way to rec
ognize the end of a word or phrase. (As you will see later,
~he vocabulary could contain phrases rather than just words,
if you want to get fancy.) At the end of the vocabulary
data section, the last "word" is "zz". When line 8760 en
counters "zz", it jumps to line 8790 and POKl!:s in ")" to

20

mark the end of the vocabulary. Note that the first words
are the verbs and the objects (nouns) come second. If you
add or subtract verbs, be sure that "save" and "load" are
always your last verbs. Line 8765 keeps track of the total
number of words by incrementing variable wnum. Line 8766
keeps track of the number of verbs. It stops counting after
the word "outojack" is encountered--which happens to be the
first noun in this list.

The data in lines 9510-9560 are the values for the ma
chine language parsing routine (see the parser section for
details). Lines 9570-9580 POKE these values in, starting ot
memory location 27t30.

Line 9620 reads in the locations of each object into
array l(v), os discussed before. The dato in lines
9610-961t show which rooms hold eoch object. For example,
object fl is in room f33. Object I 2 is in room f 25 etc. In
this list, object f7 has a location of zero, because the
player is carrying it at the start of the game. Object f 33
is zero because, in ~his example, it is a fence that is in
many locations. Objects 19,20,21, and 22 ore olso zero be
cause they are not really objects ot all. Look ot the vo
cabulary list, and you will see that they are the directions
north, south, west and east. We need to include them aa
nouns because the player can indicate o direction to go with
the sentence "go south", for example.

Line 9720 fills the r$(~6) array, os discussed previ
ously.

Lines 9901-9959 contain the 6t0 values needed to define
the shapes of the 20 sprites used. The section on sprites
will explain oll this. Lines 9997-9998 POKE these values
in, starting ot memory location 28850.

Lines 10010- 10020 are the values for the machine lon
guoge routine that controls the sprites. Lines 10030-10050
POKE this routine ln, starting at memory location 29600. The
variable sr (for sprite routine) ls set ot 29600, so we can
CALL sr---loter when we do graphics.

Linea 19900-19955 set the first scene for the player.

pescrjption .twl feedback

The lines from 500-699 and the "room descriptions" in
lines 7900-8360 write to the screen after each move to tell
the player where he or she is and whot happened os a result
of the last action.

Lines 500 - 512 check eoch time to see if the game has
been completed. In Bomb Squad, it checks the status of each
bomb. If they all have been defused, congratulations are
offered. If bomb 3 ia defused but ot least one of the oth
ers hos exploded, and the other one is defused or exploded,
lukewarm congratulations are offered. You will see else
where in the ~ame that if bomb 3 explodes, the game ends in
total disaster.

21

Line 516 clears the screen and prints the description
of the player's location. Let's skip to the room descrip
tion routine starting at line 7900.

The variable rm always represents the number of the
room t~e player is in at the time. ' Lines 7900,7920, and
7930 will cause a jump to the lines that describe the cur
rent room. Notice how the lines are numbered to help you
keep track of your room and find the right lines quickly for
debugging. 8010 is fo~ room 11, 8220 is for room 122 etc.
You always know the middle two numbers of the line number
correspond to the room being described. Of course, we don't
know what each of your rooms will be like, so in most cases
we have just put " room 1" etc. where you will put the actu
a~ descriptions of your rooms. Notice that in the descrip
tions, the first character in the string is a space. This
is necessary because on some TV sets, the first character is
displayed off the left side of the screen.

We have, however, included some descriptions from Bomb
Squad to illust~ate some techiniques. For example, lines
8080-808t describe room 18. Bomb 12 (whose status is kept
track of by variable b2) is in room 8. If it has already
exploded (b2•2) ve will want a much different description
than if it has not (b2•1 or •O).

In room 114 (lines 8140-8149) we see the use of
"flags". I~ the dog is in hi~ normal state--that is, hungry
and mean--his flag, f(34), still equals zero. However when
he is fed, the program sets his flag to 1, and ve get~ much
different room description.

~n the ambassador's suite (room 115) ve get even more
comp~icated. Several different things might be said, de
pending on the status of the bomb in her suite (what does b1
equal?) and on whether the player has knocked her out,
changing the status of her flag, f(35).

One last point, in line 8350, the spacing looks odd on
paper. However, when you list this line on the screen you
will see that the extra spaces are there to prevent the

0

word
"guard" from being split at the end of the line.

Nov let's return to the feedback section at line 518
This is a condition check that only works placed here in th;
program. The only vay variable tl (total load) can be re
duced to ~ero is if the player repeatedly tries to get past
th~ dog without using strategy. Obviously, this line is
unique to Bomb Squad, but you might have similar conditions
arise in your games.

Lines 520 - 530 are absolutely essential. They take the
letters in r$() for this room and list them one by one to
show the player what exits are visible from the room the
player is in. If an exit becomes visible during the game,
ve will ch~nge the letters for that room in r$(), We will
discus! this in more detail later, but for example if the
player'! flashlight reveals a hidden door in room't 12 on
the south wall, when that happens r$(12) will be changed.
If previously there were three visible exits, r$(12) would

22

have been "NWE". Nov ve just include the stateme nt
rS(12)•"NSWE", and the next time the player is in room 11 2,
all four directions vill be listed as visible. Simila rl y ,
if a door locks behind the player, ve might subtract a lega l
exit.

Lines 535- 560 add to the room description by list i ng
all the "gettable" objects in the room . Li ne 535 RESTORES to
the beginning of the data statements . Line 537 simply reads
from the data statements to skip over the ones ve're not in
terested in here. When it reads the vord " load" it knovs it
is et the end of the verb•. (This is why the verb "load "
must alvays be your last verb .) Line 540 loops through a ll
the gettable objects , reading each noun, one et • time .
Line 550 checks i f the locat i on of each object is i n the
current room and i f the object is visible -- thet is, i t s
fleg•O. lf both conditions are met, the name of the object
is -pdnted out.

Finally, line 560 ends the loop and prints out ms ,
vhich is the feedback (message string) that much of the r es t
of the program is devoted to. ms is changed many times in
the program and should end up vith • meaningful message fo r
the player -- such as "You can't go that vay ." or "Excellent
movel The amulet weakened the monster" etc. As soon as the
feedback is given, m$ is set to "What?" . This is the "de
fault" feedback. lf nothing else happens anywhere else in
the program (very unlikely), th"e player will get this feed
back , and vil l have to try some other command. Notice that
an extra space is pr i nted just before mS is printed. Th i s
is also because some TVs don't shov the first column of each
line vith the ADAM.

Lines 600- 630 present the graphic illustrations for t he
four rooms that have graphics. ln each line, GOSUB 2160
causes the program to print "Push enter to continue" and
then veit for the player to push enter. This permits the
verbal descriptions and feedback to stay on the screen un til
the player i s ready to see the picture. Notice that 2160 is
really part of one of the verb action routines, but it
serves nicely whenever ve vant this kind of pause inserted .
Then the final GOSUB in each line calls the graphics rou
tines.

After the play~r is given feedback end a description of
vhere he or she is, the question "What vill you do now?" ap
pears on the screen. Line 160 gets the player ' s input as
qS. The player is not permitted to use commas in the input ,
since the INPUT statement ignores everything after the com
ma. Thie ia no problem in moat adventure games, since on ly
tvo vord commands are permitted . lf you want to permit com
mas, use the input routine given later in the sect i on on
"the parser~.

23

For the parser to analyze this input, the input must be
POKEd into memory starting at location 27720 and be termi
nated with the character •A• . Lines 240- 260 take care of
this. Line 280 clears the screen in preparation for the
next feedback,

As soon as the input phrase ls in memory, lines 410- 499
set the verb number (vb) and object number (ob) to zero and
CALL the parser routine.

A "parser" separates a sentence into vords and permits
the analysis of those words. In most adventure games writ
ten in BASIC, the parser uses string manipulation and is so
slow that the game is limited to a vocabulary of about 20
words. Adventure Creator uses a machine language parser
that permits a large vocabulary (Bomb Squad has 73 verbs and
43 objects, for example) and is very fast. In fact, this
parser has features that are not used in Bomb Squad. We
will describe its features, since you might want to use them
in your own games or for other programs.

!!.2.!! ll operates.
Remember that the input routine POKEs the player's in

put into memory at 27720. The initialization routine POKEd
the whole vocabulary into memory at location 27850. When
you CALL 27430, the parser routine takes each word in the
vocabulary and tries to match it to the input sentence.
When it finds the first match, it puts the number of that
word into memory location 27409. That is, if the player ' s
input was "persuade ambassador", the parser routine will try
to match each of the vocabulary words to ~he input sentence,
and when it reaches the word "persuade" In the vocabulary
(this is word 159 in the vocabulary) it will find a match
and will put the number 59 in location 27720. Then it will
try to match the second word in the input sentence and put
its number in location 27410. If no match is found, those
locations will be zero. In our example, "ambassador" is
word f108.

Thus, line 450 can set the value for the verb (vb) and
object (ob). (Note that line 458 subtracts the number of
verbs from ob, so we know which object this is, rather than
which word from the entire list.)

There is a problem you will have to watch out for. Look
at line 9195. The word " light" ls in quotation marks and
has a leading space. Otherwise, the parser would be con
fused by a word like "flashlight" because it would find a
match btween the word light ln its vocabulary and the input
word flashllght. For the same reason, the directions N, S,
W, and E must be i n capital letters, or the parser would
match them with any word containing the letter.

mu t eo tu re s 21 ili l2llllr..
Although most adventure games use two word commands as

in Bomb Squad, the parser routine can include phrases in its
vocabulary as vell. ln the data statements containing the
vocabulary, you •ight include the phrase "vhy me?• aa one
entry in your vocabulary data. The parser vill look for
this phraae in the player's input.

r o n ci er .ifilllll .
lf you do use the parser for aome application that per

mit• the use of phrases, the player vill often enter sen
tences that include commas. This possibility requires you
to use a more complicated input routine than included in }d
venture Creator, vhich simply uses an INPUT statement. The
INPUT command ignores anything typed in after a comma.
Change line 160 and add the following lines to the input
routine in Adventure Creator

160 print • What vill you do nov?"
180 q$• ••
185 get p$1print p$;1 if p$••,• then p$•" "
190 if asc(p$)•1l goto 2t0
195 if asc(p$)•8 and len(q$)•1 then q$•"":goto 185
200 if asc(p$)•8 then q$•left$1q$,len(q$l-1):goto 185
210 q$•q$•p$1goto 185
220 if q$•"" goto 185

These lines convert commas to spaces, look for the car
riage return (aac(ll)) and handle backspaces (asc(8)) cor
rectly.

I.!!2 rn s.llll l2A.Ull feotures.
The parser can actually find as many as three vords or

phrases . With most adventure games, only two words, a verb
and a noun, are permitted, but if you ever have a use for
it, our parser will look for a third phrase. If it finds a
third match to the vocabulary list, it vill put the number
of that vord or phrase in memory location 27t11.

Finally, the parser also keeps track of ~ in the
player's input phrase the first match vas found. ln other
vords; if the player input •don't go home", and the first
111atching vord found vaa "go•, the location of •go" in the
sentence vill be indicated aa 8. That is, the end of the
matched vord or phrase ls at the eighth character. The par
ser vill place this number in memory location 27t07, You
will have to use your imagination to find uses for this fea
ture, but lf rou are trying to analyze a sentence input by a
player, thia nforination is often useful.

Assemblx longupgc listing 21~12aI..J.C..[.
Host users vill probably not be familiar with assembly

language, but for those vho are, here la a commented listing

25

of the parser routine . The first number in each line is the
decimal address of the code . listed in _ that line. The second
number is the same address 111 hexadecimal. The actual pro-
9ram values (in hexadecimal) are next, follwed by the assem
~ly language code.

27407 :680F 0
27408:6810 0.
27409:6811 0
27410:6812 0
27411 :6813 0
27412:6814 0
27413:6815 0
27414:6816 0
27430 :6826
27430:6826 AF
27431 :6827 OE dl
27433:6829 32 11 68
27436:682C 32 12 68
27439:682F 32 13 68
27442:6832 32 OF 68
27445:6835 32 10 68
27448:6838 21 CA 6C
27451 :6838 ED 63 14 68
27455:683F 3A 10 68
27458:6842 3C
27459:6843 32 10 68
27462:6846 21 34 6C
27465:6849 ED 58 14 68
27469:6840 1 A
27470:684E 77
27471 :684F FE 5E
27473:6851 CA 5C 68
27476:6854 FE 50
27478:6856 ea
27479 :6857 23
27480:6858 13
27481 :6859 C3 40 68

Pll1t:ND Dl::FB O; end of phra:rn 1
CURPllR DEF8 0
PHCNT1 DEF8 0; N of 1 st phrase
PllCllT2 D EF8 0
PHCllT3 D EF8 0
VOCADD DEF8 O;current address in vocabulary

DEFB 0
THPSTO DEF8 0

ORG 27430
XOR A; clear
LO C,$00
LO (PllCllT1) , A
LO (PllCllT2),A
LO (PllCNT3),A
LO (Pll1END),A
LO (CURPllR), A
LO llL,S6CCA
LO (VOCADD) ,!iL

NXTPllR LO A, (GIJRP!IR); c•>unt phrase
INC A;update and s tore
LO (CURPllR),A
LO HL,S6C34;phrase buffer
LO DE,(VOCADD);current location in voc

PllRHOV LO A,(DE); get character to move
LO (llL),A; store it
CP $'iE:"."?
JP Z,HOVDON;phrase moved
CP $50;")"?
RET Z; yes-end of phrases
INC llL; inc to store
INC DE; Inc to get
JP PllRHOV; move another

27484 :G S5C 1 3
27435 :6 ·~5[' -;[) 5 .;
21:1d'): 1.i Jr,t 11 .1 ·~

274 92 :6%4 () :-: lh)

274 ';)4 :G 3r>li .! 1 34
274';)7:6%';) 06 00
274'j':}: biJ6H :;3
zr.1 ou: o u()C A7
27501 : ,_i ,36D C:IJ .t 2
27503: 6B6i' ;:;:3
2751)4 :l> B70 UC l)\)

Zl') 06 : li 372 1 ,\
27507:liB73 47
27508: 6 il7 4 n
:?750';): 6 B75 pr; 5B
2751 I :6B77 51 9 7
:'."514 :fill? .~ 'i ? 1;;
27517 :6D7D 7~
275 1 ~~ : G BE ?S "i"' - J

Zl') 2U : b BIJO .; ,\ 3?
27525 :u BiJ3)A 1 ,j
27526 : G B86 8:1
::7'127 : 6 E:J7 CA 91
27'.!3'.J : IJB~ A ::.' 1 ~ 4
275 55 : o i::l ~3 D I 3
:?75 :' 4: G ilAZ C3 6<)
z-,r: :' 7: 1;1n 1 ?'
z-; ·; ~ . ; : ., ·; "' ;! I :'
!7? j~·: 11 :?·;3)C
275.:1:) : ., "~J :; ·.- '1',!.

.ns.n :..;.i•n 5A 11
275 46: 6P') A =:6 ?~'

Z7')48: 6BCJC C2 134
2755 1 :ll ilJI' } A 1 0
27554:GBA2 32 11
275r::.7 : 6 i'J\5 2 1 4A
<.7'3 ou: lJ !.l Ad ;3

. '.OVDt) ,f
1 .1 ~i\

;G

liC
:l.<TCH'l

H~'llAC

6il
i; 0

otl
rJ a

6B
01~

Gil
;,\':'Gill

:;,>
6 B 1':!/lDlJri

6B
o;;a
6B
Gr.

26

I ' /C iJ :·: :nLJd ·1te vocnh atldr
:.r \ 1/11G1\D !1), '.J~; ; :1to r P. pointer
1,0 •-;, .:;6C48: i11p•1t ;1tl1lr
f,O 1:, :~r1'1; -;e ro ·nat.c'1 count er
L1J !1 , . it.iG34 ;µhn se b•tffer
~O H, G00;only ~ ~11's
S:\ IH,:H,;f;.1l ·•P. .1t:1rt -back up
A/ID A: cle:u carry
.;DC :1 L, BC
EX 0 :.:, 111
!:.D :; , :;r)r) ; zero match c ou nt er
LO ~. (~~);get f rom in buff
LD '3 , A
LD A,(4L):oet fr om phrnse buff
CP :JSS; "'"'" '?
.JP Z , P' !R00H;phrritir? rlonP.-::i 11u tc!1
T, fl (mflf'~'l'r)), A
Lll A, ~
f" 0 : ~ ~ :·: ; input :t ""' " ?
.Jp Z ,llX 7 PHR;y et> -d o n e input
l.D A, l T;·1 P~ T 1J)
CP i:l ; :ua tch?
J p :; , ,J ATC:ll : J~H-t! O morP.
LD ! !L, :>6C34;n o-r~st::i rt µ hrase bu:f
r;ic IJ C:; next input c har
,J P ./\TC/ill
r ·1:; :i:,;next : •hct r :1
[if: I :

r ·1c C;count :1a tc h en
J!' .i .C'.I AC
LD i\, l ?!IC/l'ft) ; a lrendy :rn tched?
A:rn ::;pp
JP NZ ,SC~DPH;yes
~D A, (CU RP!l~);no-ge t phr I
LD (?!ICl/'~1),A;store it
LD '!'..,~6C4'3;input huffer
~:\ o;;, .;L;o11l>tr ·1ct :;tart of in µu t buff .-

27561 :bBA9 A7
2 7562: GBA A i::o 5 :?
275ll4 : 6B AC l:!l)
::7565:1..>B.\D 7B
27566:6BAi': 32 OP
'.?756'l : 6il~ I r.~ 1 !°"
27 5'12: i),lB4 ·~A 1 '~
:?7575: Lfl 07 :;G f' ,~

27 ? 77: u Ull9 C2 CS
27~dU:t>UilC 3A 10
27583:bBllf' 32 1 2
27586 :6BC2 C3 3P
275B9 :6Bt:5 3A 10
27 5':12: G HC'.3 32 13
27595 613Cl3 C9
27700 6C34
27700 6C34 0
277::.'0 6C 1!8
27720 6C48 0
271350 liCC.\
27850 6CCA 0

11

" fl

b 13
oiJ
6 U
fi ll
GB
.;u

A:ill A;(cl ear carry)
:F1C !! L, D":
~·: D ·~ . !:.,; 1 oc : lti1>n of .> •tr ·t.::
r) \ ;;- . !J+-O rP i I"

~ll 1~ : ii -:: :loi::i. -
,T n •! '(mp1~0

:~Ci!OP'! LI) A' (!'/ICll'r2) ; :1lready ')')
A ~JD .~~' t.'

J P 11Z 1 TrllllJP.l
LIJ A,\ Cli1<i':ll1)
1.0 (P•IC ·J ·~ : ~), .\
,/ P :1:nP!lll

'!'llHDPll LD A, (GUHP!U); 3rtl ~atc:i
LD (i'llCilT3) ,A
RE'f ;3 plentj'
WIG 27700

VUCUUP D Ef''l u; pi1ra :1e buf fe r
ORli 2 7720

ll!Bl/f'F DEF'B O; input h11f!'1Jr
OttG 27t35 1 >

VOCAOU DSFU 0 ;v •l•::i bulnry

27

Error messages and condition ~

28

that variou s
done. Line s

is valid an d

An essential part of adventure games is
events depend on what the player has already
700-999 check for whether the player ' s i nput
whether certain conditions have been met.

It is here that ve will start ass i gning a value to ·the
string called mS. Remember in the feedback section that mS
(for " message string ") was printed out to tell the playe r
what was happening.

First, line 700 checks to see if tvo words were used .
If there was no second vord that exists in the vocabulary ,
line 700 sets mS to "That's silly." Remember t hat we wil l
have plenty of chances to change m$ before ve report back to
the player. Thus, if the player enters a single letter ,
such as N, to go north, line 700 will set m$ to "That ' s si l
ly" even though the input was valid . Later ve vill overr i d e
this with a nev version of mS.

Line 730 checks several things. If there is no verb or
the first vord in the input is not in the ve r b vocabulary or
if the second vord in the input (ob) is in the verb list, mS
says "You can't (whatever the player input). "

Line 740 checks if the player is carrying the named ob
ject. This mS message vill be replaced later in most cases .

Lin~s 825 - 860 are one condition check from Bomb Squa d
and are included here as an example of the kinds o f thin gs
y~u sh~u~d put in this part of the program. Bomb Squad is a
time-limited game, sot (for time) is incremented each mov e
t~e player makes. As soon as t1 (for t i mel1) is passed, t he
first bomb explodes, vith GOSUB 5100. S i milarly for t2 an d
t~. I~ Bomb Squad, the third bo~b is a killer, so the ro u
tine at 5300 ends the game. This kind of condition check
permits a lot of interesting variation. For example in
B~mb Squad , there are actions the player can take that ~ause
time to be wasted (you ' ll have to figure out how yourself) .
The passage of t i me can be simply marked by adding some num
ber to the variable t .

You will need lines 900 - 999 . The parser has given you
the number of the right verb_, and in a moment you vi 11 ven t
to branch to the routine that handles the activity called
for by that verb. We have lots of verbs available, in orde r
to make the game more interesting, but many of the verbs
have roughly the same meaning and vill call for the same
verb action routines. In other words, the player might ven t
to "search" or "examine " or "inspect" or " explore " etc. I f
the game permits only one of these wo r ds, it can be ver y
frustrating to the player vho has to make many guesses t o
get exactly the one vord used by the author. Adventure Cre
a~or permits many such words to be U9ed, but· the par9er will
give each of these words a different value (in the variable
vb). We need to see that all of these similar words have th e
!lame value for getting to the right verb action routine .
Thus, for example , in the verb vocabulary, the words 1 i ke

29

"search" are verbs numbered 19 - 24. If the input verb was
one of these. line 920 will set vj (for verb jump number) to
6. You will soon see that verb action routine 16 deals with
all "searching" verbs. You can apply th~ same pr!nicple ~o
each of the lines that sets a value for VJ . To figure this
out , you will have to keep referring to the vocabulary data
list in lines 9115 - 9370.

~ t£1.i.2n routjne5

In many ways, this section is the heart of the adven
ture game. The player's verb input tells vhat. is to be
done. Each verb lor similar group of verbs) has its own set
of permitted actions.

Line 2000 returns with no action if no verb was found-
- m$ will say "You can't (whatever the player input) " .

Line 2005 is a condition check from Bomb Squad. This
condition check had to be put here because it is one that
permits only two actlons- - dropping something or ch~cking
what one is carrying. If the player got weakened in the
game his or her carrying capacity (tl for "total load" in
Bomb

1
Squadl wa5 reduced . Thus, in order to continue , it may

be necessary to drop something. The co~dition . chec~ must
permit the player to get to the verb action routines in or
der to drop something, but line 2005 permits only verb ac
tion routine 2(car r ying?) or 11 (drop,throw , dump,release, or
leave) . We have gone i nto detail on this line as an examp~e
of the k i nd of condition checks you will want to develop in
your own games.

~ 1.2 ~ rout i nes.
Lines 2010 and 2030 use vj to jump to the appropriate

verb action routine. Note how we have numbered the lines
here. The firs t verb ("help") is at 2100, the second
("carrying?") is a t 2200 etc . This permits you to find your
way arpund your program more easily . A hundred line numbers
are plenty for each verb routine, !nd rour program will be
much more readable and easy to modify if you use some ra
tiona l line numbering system.

• il!1.t 2 1 0 0 - !!tlI! .
If you're hard hearted , you may want to leave out this

routine . The player can ask for help and have the entire
vocabulary listed on the screen . This mi ght be c~nsidered
cheating, since seeing the vocabulary usual~y gives huge
h1nts on solutions t o problems . For example, in Bomb Squad,
seeing the verb "blackmail" practically gives away one solu-
tion .

30

Line 2110 skips through all the data statements until
it finds the first vocabulary word. Then line 2120 reads the
vocabulary until it finds "zz", at vhich point it quits.
The variables vc (for word count) and hp (for help) keep
track to be sure only 4 vords per line and 16 lines per
screenful are printed, so the screen vill be readable.

Line 2200- Carrying?.
Line 2210 skips through the data statements to the last

verb. Then line 2220 checks the c(I array to see if each
"gettable" item is . being carried. If it is, the object name
is printed.

Line 2300- Go.
------;;tlc~m;;i°t routine is so important, it is practically

a small program in its own right. First, we must determine
~he direction the player vants to go. If the player input
Just N, S, W, or E, line 2300 vill set variable d (for di·
rection) to 1, 2, 3, or 4 by subtracting 3 from the verb
number vb. These letters arc items 4-7 in the verb list.

Nov you vill see vhy the vords "north", "south",
"vest", and "east" are included in the vocabulary as "ob
jects" or nouns. We permit the player to say things like "go
so~th" o: "cravl east". Thus, the verb will be "go" and the
ob1ect v1ll be one of the directions. In this case, lines
2303-2312 will set d correctly.

Following the setting of d, you should include some
condition checks relating to player movement. Line 2344 is
one such check included from Bomb Squad as an example. (If
you want more examples, list out Bomb Squad.) In this exam
ple, the player is at the front door and has not yet "disa
bled" the guard, whic~ the.program knows because the "flag"
for the guard (f(45)) is still zero. If the player tries to
90 north (d:1) or cast (d•4) under these circumstances, mS
iss~t to The guard won't letyoupass", and nothing is
permitted to happen because the RETURN, terminates the verb
action.

Lines 2370-2388 check to make sure the player isn't
trying to valk through a vall. Remember that the route ar
ray rS() contains the permitted directions of movement for
eac~ location. We are going to use "flag" 19 (f(19)) tempo
rarily here because we von't ever need it to keep track of
evcnts--vhy?, because "object" 119· is really a direction
name. The FOR NEXT loop in lines 2372 take each letter from
:s<.> !or t~e current location. For example, if the player
ls in room 112, and room t12 has only doors at north and
south, then.rS(12) vi~l be "NS": If the player is trying to
go n~rth, line 2376 v1ll determine that da1 and N is permit
ted in :oom 1~2; f(19) vill be set to 1. However, if the
p~aycr !s trr1ng to go cast, d vill equal 4 and line 2382
vill fail, since the letter Eis not in rS(12). Thus, f(19)

·"

) 1

· 11 not get set to 1. If this is the case, f(19) will . still
.., 1 . "C ' h t I. be zero, and line 2386 v1ll set ms to an t go t a war ...

How return to lines 2376-2362. When the If cond1t1on

5ucceeds, the room number gct5 changed . Now you ~an see why
the "vorld" of your adventure game is laid out in a squa~e
grid. When the player moves north, the new room number IS
exactly 6 less than the old one (assuming you're using a 6x6
grid, as in Bomb Squad). Hoving south adds six to the room
number, east adds one, and west subtracts one .

~ 2400 - !kl·
The--;;-g;t• verbs are another essential verb routine.

The player must acquire and discard i tems to 5olve problems .
If the player says something like "steal guard" and you

have not included the guard as a •gettable" ob1ect, line
2400 will prevent the action. Line 242~ checks if the player
is in the 5ame room as the ob]ect. Line 2430 checks if the
object i5 vi5ible -- if the object's flag is set to 1 it is
likely hidden or invisible, if magic is at work. If the
player is already carrying the object, line 2440 takes care
of things.

Line 2452 is usually necessary to force the player to
use strategies . If there is no limit to the objects that
can be carried, the player will simply pick up everything.
llere variables tc (for total carried) and tl (for total
load) keep track of thing,. If the load is at . maximum, ~he
action is prevented by RETURHing the player ~ithout taking
action. In this example, tl may change depending on whether
the player has been weakened in _previous _game action. Bomb
Squad starts vith tl set at 4 items maximum to be carr1e~.
This• gives some flexibility but also requires careful deci
sion making, since the player isn't sure what circumstances
will be encountered.

Line 2460 checks all the required conditions and then
grants the player the item being sought. . .

Line 2470 is specific to Bomb Squad, but it is included
here because it illustrates the solution to a common prob
lem The verb "take" is included as one of the "get" verbs,
but.in Bomb Squad, it can also be sensibly u5ed in "take
pictures" . This line gets a:ound the proble~ . . Your problem
is going to be that you vill hav~ to anticipate . how ro~r
players might use different vords in vay~ you don t antici
pate. Probably your best 5trategy here 15 to play your ovn
game many times, putting yourself _ in others's shoes. Then
have some friends play the game vh1le you take notes on such
problems.

~ 2500-- Open.
A common adventure verb, open is used in many vays de

pendent on your pa rt icular story line. Lines 2500 - 2590 dem
onstrate 5everal condition checks, to see if the player has

32

the necessary tools (or magic spells or keys or whatever) to
open the door. Line 2530 is included to illustrate a new
technique. In this instance, the only permitted directions
of movement in room 130, were N and W. However, after the
player unlocks a door, south is also permitted, so rS(30) ,
which holds the permitted routes for room 130 is changed
from "NW " to "NSW".

Line 2600 - - Examine.
Another very useful set of verbs are the search/examine

ones. Line 2600 checks if the player is in the same room as
the object and sets mS to "Nothing special -- just a (whatever
the object is) ", Of course, if it is something spec i al , we
will soon change mS to something else. For example, line
2630 determines that the player said , "examine garbage " , so
mS • "That's disgusting! •. (Try to catch the player off guard
and be amusing sometimes.) Line 2640 illustrates what hap
pens if something hidden is discovered . The player has
said, "search grass" and discovers a crowbar. Thus f(2) -
the crowbar " flag" -- is set to zero, since it is now visi
ble--that is, "normal ".

Lines 2700 - 3000.
These verbs (read, decode, defuse, unlock/pry) are

fairly specific to the Bomb Squad game. You may be using
other verbs here. The sample lines provided are fairly easy
to figure out.

Line 3100-- leave.
Verbs like " leave " and "drop" are essential, if you

have used "get" verbs and limit the amount the player can
carry.

Lines 3200 - 3400.
Hore specific verbs (light, extinguish, fight). One in

ter~sting point here is that the verb "unlight" is ungram
matical but commonly accepted in adventure games since we
don't have a common verb that means turn off the iight. How
ever, you and we are erudite gamers and prefer to use accu
rate - even if esoteric --vords, like "extinguish". Impressed?
Another poi~t is that this action is absolutely useless to
the player in Bomb Squad. However, useless actions and use
less objects must be scattered through the game to force the
player to think through what really matters .

Line ill!t:..= ~.
Al~hough this verb is absolutely essential, try to use

it sparingly. Adventure games sometimes get simplistic and

,.,.

33

boring by making the player say th i ngs l i ke . : use keys " and
not permitting " unlock door". The mo~e spec1f1c language i s
more interesting . However , some things do not lend them
selves easily to one - verb commands. for examp l e, you might
have to say "use crowbar " , since we ~on't have a . good crow
bar verb. Bomb Squad gets around this at one point by per
mitting " pry door " if the player has the crowbar .

~ 3600 - 4100.
Some lines from Bomb Squad are i ncluded for

verbs to illustrate the verbs - - move, drink , break,
feed, blackmail / bribe, and show .

these
talk ,

k.in.£ 4600 -- SAVE .
• The SAVE c~nd is not essential , but better games in
clude it, and it greatly adds to the player's pleasure.
Some people a c tually have to work for a living, and it can
be pretty frustrating to have defeated the Lord of Darkness,
cross the Mystic Threshhold, prepare to decode the magic
code and have the boss call to find out why you're late
again . A game in progress can be SAVEd to be complet~d l~t
er . It is also smart to SAVE a game as you are pl~y1ng it.
Then i f you get killed or are in a hopeless situation (per
haps you can no longer carry anything), you can quit, R~N
the game again, and reLOAD the game as you were when you did
the last SAVE .

This and the " load" routine illustrate the general pro-
cedures for interacting with tape or.disk drives ~ith ~he
ADAH . Line 46 10 opens the file. In this case, the file will
be named " bombgame", but you will want to use some other
name . If you wan t to permit the player to SAVE . the game un
de r many different names, i nclude an INPUT line somewhere
that perm i ts t he player to ass i gn a name (up to 10 charac
ters long) to the variable f $ (for file string: although rou
can use any var i able name, or course). In this case, line
4610 would be exactly as follows.

4610 print chr$(4 l ;"open " ;f$;",dr;dr$. .
This creates the equivalent of the current line . 4610 with a
different file name . Remember that dr$ determines whether
you wi ll be saving to tape or disk. I~ line 5?, we set
dr$•1. This is for tape. If you want a disk version of your
game, set dr$ t o 5 in line 50 . .

Line 4620 prepares BASIC to write to t~e file. Lin~s
4630 use PRINT statements to write all the 1mportan~ vari
ables . In this ci rcumstance, the PRINT . com~and writes to
tape or disk because of the PRINT chr$(4) in line 4620.

Note that l i ne 4695 terminates the SAVE and has the
same general format as the open i ng line : 4610 . I f you per -
mit f$ for d i fferent file names, make line 4695;

4695 prin t c hr$(4);"close ";f$;" , d";dr$

34

Line 4700-- LOAD.
When the player inputs simply the verb "load", the pro

gram looks for a file named "bombgame" or whatever you
change this to for your own games.

Note that this routine is exactly like the SAVE rou
tine, except we say "read" instead of "write", and INPUT
rather than PRINT. It is essential that the variables be
INPUT in exactly the same order as they were SAVEd or, of
course, they will have the wrong values. If you use f$ for
the file name, make Line 4710 just like 4610 and line 4795
just like 4695. (Notice how we are using parallel line num
bering to make the program easier to understand and modify.)

GRAPHICS

Lines 6000-7799 have been reserved for graphics rou
tines. Graphics routines in BASIC take up quite a bit of
memory, but they are really worth it. Using visual clues in
pictures adds a lot to adventure games. The ADAH has some
pretty spectacular graphics capabilities, but BASIC makes
them hard to use. Once you understand these sections on
graphics, you should be able to draw high resolution pic
tures and use up to 32 sprites--but more on this later.

Using HPLOT 12.!. "building blocks"

Your general strategy is going to be to draw line draw
ings using small subroutines as "building blocks", place
sprites around your picture, and then animate the sprites.

Examples of "building blocks" can be found in lines
6000-6055. Lines 6000 and 6010 draw the interior lines of a
room in "3D" perspective. These two lines assume that some
where else in the program you have gotten into high resolu
tion mode (with lines of text at the bottom of the picture)
with a HGR command and have set HCOLOR to some value. Then
you use GOSUB 6000 to draw the room walls. To portray dif
ferent rooms, just use different HCOLOR's.

Line 6030 is a similar routine that draws a 4-pane win
dow in whatever HCOLOR was set last. The upper left-hand
corner of the window will be at coordinates x and y. X and y
must be set before this line is called with a GOSUB. x is
the horizontal value and Y is the vertical value. This per
mits you to draw windows anywhere on the screen and to
"stack" these windows on top of each other for big windows.

Dy the way, let us save you some frustration--or at
least prepare you for it. The command HPLOT 100,50 to 150,50
should always draw a straight horizontal line. Sometimes,
for reasons best known to the writers of smartBASIC, there
is a jog in the line, so you have to use something like

0

.c

,tJ

rt

fe

so

10

9
72

.....

35

HPLOT 100,50 to 150,49 to get a straight line. The
subroutines included in Adventure Creator are adjusted for
this, but you will probably run into the problem when you

'make your own "building blocks".
Line 6040 draws a door ot the bock of the room drown by

line 6000.
Line 6050 - 6055 draws a side window, in perspective, on

the right hand wall of the room drown by line 6000. As with
the rectangular window, you need to set x and y coordinates
before calling this subroutine.

Plotting yQY.I. drpwjngs.
In order to use HPLOT to draw pictures it is essential

to prepare graph paper marked from 0 to 255 along the h~ri
zontol axis and O (ot the top) to 159 along the vert17al
axis. Drow in the major lines of your scene and determine
the points for starting and ending your HPLOT commands.

prowjng 1.llt ~

The more "building blocks" you have, the easier it is
to draw o scene, but there will usually be unique ports to
be drawn for each scene. Bomb Squad and The Visitor both
use graphics to illustrate four scenes. One of the scenes-
the view of the front of the embossy--will be onolyzed here
as on example. If you wont more examples, of course, you
con list the sections from 6000-7799 in each of the other
programs. · h

Line 6200 sets BASIC to the llGR mode, which is hig
resolution graphics, with room reserved ot the bottom of the
screen for lines of text. For our purposes, this is the
best mode, so we can ask the player for input while the pic
ture is still on the screen.

Line 6203 - 6205 sets HCOLOR and x and y and draws win
dows by GOSUD 6030. Lines 6210 - 6230 use HPLOT's to draw in
building outlines , driveways, and a garage .

Uing sprites

How comes one of the most i~teresting (and probably
most complicated) parts. But hang 1n there, sprites will be
worth understanding. .

One of the most powerful graphic too~s o~ the.ADAH is
the J2 sprite capability ovoilobl~. A sprite 1s.o h~gh ~es
olution figure that can be BxB bits or 16x16 bits i~ si~e.
Each bit is one dot on the screen, and remember that 1n high
resolution there are 256 dots horizontally and 159 dots
vertically'. so a 16x16 sprite will occupy about 10\ of the

36

picture from bottom to top. We find th11t 11 hum11 n figure
should thus be m11de up of two 16x16 sprites (one on top of
the other) to be pr?portional to an interesting picture on
the screen. The sprites c11n 11lso be in 11 m11gnif ied mode so
th11t 11n BxB becomes 16x16 11nd the 16x16 sprite bec~mes
32x3~. The problem with the magnified mode is th11t the res
olution looks much cruder--th11t is, e11ch dot now looks lik
11 sm11ll squ11re, so the pictures don't h11ve 11s profession 11 1 :
look.

. For now, don't worry 11bout how to m11ke 11 sprite 11 11 r -
ticul11r sh11pe; we will de11l with th11t 111 ter. Just un~er
s~11nd how they look on the screen. E11ch sprite is 11 sm11 11
p~cture th11t c~n be instantly moved 11nywhere on the screen
simply by setting two numbers, which will be the coordin 11 tes
of.the . upper left h11nd corner of the sprite. In 11ddition to
being.inst~n~ly move11ble, e11ch sprite h11s 11 cert 11 in priority
of being vis~ble. The sprites are numbered from 0- 31 d
the lower the number, the higher the priority of being'vi!7-
ble. Thus, if sprite 1 and sprite 7 are moved to the same
pl11ce on the scre~n, sprite 7 v~ll be hidden "behind" sprite
1. Ev~n better, if part of sprite 1 is not colored in, that
p11~t will seem tr11nsp11rent, and we will be 11 ble to c 11 tch
glimpses of sprite 7 behind it, through the transp11 rent
~ar~s of sprit~ 1. These ch11r11cteristics permit very complex

3D effects without complex programming.
. A~y on~ sprite can be only one color, but these ch11rac

teristics give us w11ys to make multicolored objects on the
~creen. An ex11mple is the vom11n who 11ppears 11nd dis11 ppears
in the.gu11rd house in Bomb Squ11d (11nd is included 11 s an ex -
11mple in ~dventure ~reator). She h11s peach - colored skin and
yellov h11ir. She is made up of two sprites, one yellov 11 nd
one peach. She is dravn so th11t the "skin" sprite ls trans
parent where her h11ir goes and the h11ir sprite is transpar
ent where the skin goes. Actu11lly, both sprites 11re trans
~11re~t .around the edges too, so you can see the guard

behind ~er. ?bvio~sly, this me11ns that the guard is made
up of sprites with higher numbers th11n the sprites th11t make
~~k~~~ w~m~~·i .When

1
she m?ves, we simply move both the

an 11 r spr tes s1mult11neously. If you vant to
~et cu~e • . you c?uld dr11w her 11s bald in sprite 14 and draw
er hair in sp~1te 13. Then as long 11s both sprites move

to9ether, sh~ wil~ ~11ve her h11ir, bec11use sprite 13 h11 s pri
~~~~ydfor be1~g visible, and her b11ld head would be hidden 
her ~w · t~e h11 ir. Then if you move only the "h11ir" sprite, 

ig would come off. Then you could ch11nge her skin 
ct?lor, as she flushes with emb11rr11ssment. Let your im11 gin11 -

ion run. 
You probably von't run into this, b t 1 t i c~n be on 11ny one line of the screen u on 1 spr tes 

d1s11strous occurs, but if mor• than • llt a time. Nothing t · 1 ·~ .. sprites h11ve the same 
ver ~cll coordinate, parts of some of them will f11de in un
predic11t11ble w11ys. 

37 

Learning how to create sprite shapes will not be easy, 
unless you already understand things like hexadecimal num
bers and the bit patterns used by computers. We will try to 
make the necessary information understandable. 

Start with a grid on paper that corresponds to the size 
of sprite you want. We much prefer the 16xl6 sprites with 
out double - size magnification. They do consume a lot of 
memory, but they are also of a more useful size on the 
screen than the BxB sprites, and they look better than the 
magn i fied sprites. Our ex11mple is of a 16x16 sprite, but 
the same principles will apply to BxB if you prefer them. 

The 16x16 grid in the following figure shows how we 
created the two sprites for the voman. first sketch in the 
ports, in this case the skin and hair, lightly. The squares 
of the grid ' containing hair we filled in with the letter H. 
(Actually, we did the original picture with colored pencils, 
which mode it easier to visualize.I The sk i n squares are 
marked s. Since the woman is to appear only in the top of 
the guard house, we wil1 need only the top part of her pic
ture --otherwise we would hove needed another two sprites 
(for skin and clothing) for the bottom half of the picture. 

How that the grid contains H's and S ' s and blank spots 
we can fill in two separate grids , one for hair and one for 
skin, each representing one sprite • 

Now comes the hard port. We have to determine the num 
bers that the computer will understand as the correct pat 
tern of bits for our picture. Drow a vertical line down the 
middle of the grid, so you hove two columns, each 8 boxes 
wide. There are 16 rows of boxes in each column. Each row 
of 8 boxes will be represented by one number from 0-255. 
The computer represents numbers as patterns of 8 ones or ze
ros , using b i nary notation. Wait! Wait! Don't stop reading . 
We are not going to require you to understand binary and 
hexadecimal numbers. If you already understand these things 
you will not need the next table and can assign numbers 
based on the bit patterns in your drawings. lf you don't, 
just use the following table, which gives you the "bit pat
tern" of every number from 0- 255. 

Let's create the "hair" sprite as on example. we need 
32 numbers- - in this order . Sixteen numbers that represent 
the left hand column of rows of eight boxes, followed by 
sixteen numbers that represent the right hand column. (Each 
of these numbers will be o " byte" . ) The first row in the 
left hand column is all blanks, so the first number will be 
zero. The second number will be l (we will provide the 
hexadecimal numbers in parentheses here - -03H for this one). 
The third number i s 1 (07HI, fourth is 6 (06H), and fifth is 
12 (OCH). You can refer to the diagram and to the bit pat 
tern table to understand how the rest of the numbers were 
determined for the hair sprite and for the skin sprite. 



38 

As an example of how to use the bit pattern table, look 
at the fifth row of boxes in the "hair sprite". The left 4 
boxes are empty, the next two are filled with the color, and 
the right 2 boxes are empty. In the bit table, 0 represents 
an empty box and 1 represents a colored one. Thus, the pat
tern we are looking for here is: 
00001100 

With a little practice, it will become easy to find a 
particular pattern in the bit pattern table; here we see 
that the number 12 gives us the pattern we want, so the 
fifth number in the data for our hair sprite vill be 12. In 
the program listing, this is the fifth piece of data in line 9940. 

rt ff ~ f: II 'II I/! w 
..... 'f It i.J J'.ilH it lh' I# 

If: 1.4 .... .> I~ 7 IS • 1- Ill l!I 
111- ljf >IS I/ > -; ., l/f 
'h /I IS IS I/ I/ ..51> s· 111 Ill 
Ill I/I 1.5 I> :; 5 IS ) ) llf if •iii 1/.1 If If IS 15 5 II II J... llt II II .-. s IS 15 llJ II llf IH l/f 111 >7 .-1 11 Ill In It d 5 15 15 I-",_, 
11 l/t ~ l':i 15 ,,, 't 
5 ) ) ?5 5> 5 rs· IS 
) ? / ;;> / 15 5 5 <) ~ 

15 s IS" 'i- 5 s '; s IS 
I~ 1.:5 5 > 51S IC, 55 

Initial sketch of woman's head for making sprites #1) 
and #14. The letter H shows where hair color is to go, 
and the letter S shows where skin color is to go. 

no. 

0 
) 

7 
6 

12 
12 
12 

108 
108 
po 
28 
12 

0 
0 
0 
0 

11ilh 
1-1 Ii 

Id 

Iii II 
Ii !fi Ill 
tf ti 

.·I I/-
IH l!t 
Ji Lt 

ltt It 
:h' IH i, II+ 111 

llf IH Ill 
Ill II 

Id I~ iH 
Ii ;., II H 

l/t IH 
llt II 
If HH 

llllH 
If 11 
'H Ill 
I/I II 
J.I. !if 
H II 
H11J 
" i l.J 

Ii_ 
IH 

no. 
0 

252 
252 

14 
6 
6 
6 
6 
6 

7 
7 
6 
o· 
0 
o · 
0 

't N bers are taken from Diagram of grid for "'hair"' spri e. um DATA in line 
The Bit Pattern Table and correspond to the 
number 9940-9941. 

no. 

0 
0 
0 
1 
) 

) 
) 
) 
1 
0 
0 
0 

15 
15 

I'- l"J I/~ 15 15 5 
15 S .5. <i c; IS S 
SIS > 

l'::I> 515 
.5 5 

I~ 15 
I') 5' 's 15' :;> 515 2_ 515 
1'2 2.15 IS 2151<7 515 5 

25 
49 s > 1<; 6 5 5 2 .:5 5 

no. 
0 
0 
0 

240 
88 

248 
248 

16 
224 
192 
224 
224 
252 
252 
246 
24) 

d t .skin"' sprite. Numbers correspond Diagram of gri or 4 
to the DATA in line number 994)-994 · 

39 



41 

051 00110011 115 01110011 179 10110011 243 11110011 
40 052 00110100 116 01110100 180 10110100 244 11110100 

053 00110101 117 01110101 181 10110101 245 11110101 
ll.I PATTERN- TABLE 054 00110110 118 01110110 182 10110110 246 11110110 

055 00110111 119 01110111 183 10110111 247 11110111 
no. pattern no. pet tern no. pattern no. pattern 056 00111000 120 01111000 184 10111000 248 11111000 

OOO 00000000 064 01000000 128 10000000 192 11000000 057 00111001 121 01111001 185 10111001 249 11111001 
001 00000001 065 01000001 129 10000001 193 11000001 058 00111010 122 01111010 186 10111010 250 11111010 
002 00000010 066 01000010 130 10000010 194 11000010 c 059 00111011 123 01111011 187 10111011 251 11111011 
003 00000011 067 01000011 131 10000011 195 11000011 060 00111100 124 01111100 188 10111100 252 11111100 
004 00000100 068 01000100 132 10000100 196 11000100 e 061 00111101 125 01111101 189 10111101 253 11111101 
005 00000101 069 01000101 133 10000101 197 11000101 062 00 111110 126 01111110 190 10111110 254 11111110 
006 00000110 070 01000110 134 10000110 198 11000110 06}. 00 1 11111 127 01111, 111 191 10111111 · 255 11111111 
007 00000111 071 01000111 135 10000111 199 11000111 
008 00001000 072 01001000 136 10001000 200 11001000 
009 00001001 073 01001001 137 10001001 201 11001001 
010 00001010 OH 01001010 138 10001010 202 11001010 
011 00001011 075 01001011 139 10001011 203 11001011 
012 00001100 076 01001100 140 10001100 204 11001100 
013 00001101 077 01001101 141 10001101 205 11001101 
014 00001110 078 01001110 142 10001110 206 110011I0 
015 00001111 079 01001111 143 10001111 207 11001111 
016 00010000 080 01010000 144 10010000 208 11010000 
017 00010001 081 01010001 145 10010001 209 11010001 
018 00010010 082 01010010 146 10010010 210 11010010 
019 00010011 083 01010011 147 10010011 211 11010011 
020 00010100 084 01010100 148 10010100 212 11010100 
021 00010101 085 01010101 149 10010101 213 11010101 
022 00010110 086 01010110 150 10010110 214 11010110 
023 00010111 087 01010111 151 10010111 215 11010111 
024 00011000 088 01011000 152 10011000 216 11011000 
025 00011001 089 01011001 153 10011001 217 11011001 
026 00011010 090 01011010 154 10011010 218 11011010 
027 00011011 091 01011011 155 10011011 219 11011011 
028 00011100 092 01011100 156 10011100 220 11011100 
029 00011101 093 01011101 157 10011101 221 11011101 
OJO 00011110 094 01011110 158 10011110 222 11011110 
031 00011111 095 01011111 159 10011111 223 11011111 
032 00100000 096 01100000 160 10100000 224 11100000 
033 00100001 097 01100001 161 10100001 225 11100001 10 
034 00100010 098 01100010 162 10100010 226 11100010 
035 00100011 099 01100011 163 10100011 227 11100011 
036 00100100 100 01100100 164 10100100 228 11100100 
037 00100101 101 01100101 165 10100101 229 11100101 
038 00100110 102 01100110 166 10100110 230 11100110 
039 00100111 103 01100111 167 10100111 Z31 11100111 
040 00101000 104 01101000 168 10101000 232 11101000 
041 00101001 105 01101001 169 10101001 233 11101001 
042 00101010 106 01101010 170 10101010 234 11101010 
043 00101011 107 01101011 171 10101011 235 11101011 
044 00101100 108 01101100 172 10101100 236 11101100 
045 00101101 109 01101101 173 10101101 237 11101101 
046 00101110 110 01101110 174 10101110 238 11101110 
047 00101111 111 01101111 175 10101111 239 11101111 
048 00110000 112 01110000 176 10110000 240 11110000 
049 00110001 113 01110001 177 10110001 241 11110001 
050 00110010 114 01110010 178 10110010 242 11110010 



42 

~ ~ strategies. 
Adventure Creator includes the sprites actua~ly used in 

the Bomb Squad 9ame to illustrate some pro9rammin9 princi
ples and to provide you with a startin9 point. Once you un
derstand this part, you will be able to use some of the 
sprites from The Visitor if you prefer them. 

The lines· 9901-9959 contain the data for drawing the 20 
sprites from Bomb Squad. Each 1.!!Q lines of data represent 
one sprite. Each data line contains 16 values. the first 6 
lines of data are all 255. This creates three sprites that 
are solid blocks--sprites tO, f1, and ti. These three 
blocks can be made various colors for use in many different 
scenes. For example, one block is the bottom half of the 
guard house in Bomb Squad, and all three blocks are used to 
make up 3/4 of the gate in the . picture of the dog's yard 
scene. Two blocks are used as furniture in the library 
scene, and they also serve as crates in the storage room 
scene. These blocks are put in low-numbered sprites so ve 
can hide things behind them. In the guard house scene, for 
example, the woman is hidden in the bottom of the guard 
house until she appears. 

The next two sprites Clines 9910-9914) are empty 
squares that can also be used for different scenes. For ex
ample, as the top of the guard house and as crates in the 
storage room. 

Lines 9916-9917 are the top of a bookcase that is set 
on top of one of the solid blocks to make a bookcase in the 
library. 

Lines 9919-9920 are a round bush that can also be used 
as the top of a tree. 9922-9923 are a leafy bush that can 
also be the top of a tree. 9925-9926 is a tree trunk. Of 
course, these three sprites can be used in different combi
nations with each other and in different colors to create 
different species of trees. 

9928-9929 is the "broken part" of the gate lthe lover 
left corner) in the dog yard scene. 9931-9932 are the book 
and letter on the shelf in the library. 9934-9935 make up 
the main body of the car in the garage; 9937-9938 make up 
the trim, wheels and steering wheel of the car. Of course 
these two sprites always are placed in the same location. 

9940-9941 is sprite f13 !remember to start counting 
with 01, which is the woman's hair. 9943-9944 make up her 
face and shoulders. 

9946-9947 are the man's hair and shirt, and 9949-9950 
are his face. Note that these "face/hair" sprites could be 
used to make several different characters in different 
scenes by changing the color of hair and skin. 

9952-9953 is one picture of a dog, and 9955-9956 ls the 
same dog with his legs and mouth in a different position. 
By switching between these two sprites and mo~ing horizon
tally, you can animate the dog to be walking and biting. 

9958-9959 are the bomb in Bomb Squad. 

As we noted in the section on initializing, all of 
these numbers must be POKEd into memory in exactly this or 
der, starting at memory location 28850. 

~ pttrjbutes 

The control of each sprite depends on 4 numbers--the 
attributes of the sprite. Thus, for our 20 sprit~s, we will 
need 80 attributes. The first two numbers determine the lo
cation of the sprite on the screen; they are t~e coordinat~s 
of the upper left corner of the sprite . T~e first nu~bet is 
the vertical coordinate, and the second is the horizontal 
coordinate. (Note that this is opposite of using coordinates 
with HPLOT, where the first number is the horizontal coordi
nate.) The attributes of the 20 sprites in Bomb Game are in 
the data lines 8600-8625. Notice that in each group of 4 
numbers the first two numbers are 200. This means that 
when th~ game is initialized, each sprite is at location 200 
(vertical) and 200 (horizontal). This is below the visible 
part of the screen, so the sprites are hidden, waiting to be 
used. 

The third attribute is the sprite number. If you are 
using 8xB sprites, this number will simply be 0, 1, 2, or 
whatever the actual number of the sprite Is. However, if 
you are using 16x16 sprites (as we ar~l • . the actual number 
you must use is the sprite number multiplied by 4. The rea
son for this Is that ADAH uses this number to know where to 
look for the correct sprite data in the data table for de
termining shapes. The 8x8 sprites each use 8 bytes for 
data, but the 16x16 sprites use 32 bytes e!ch •. Thus, in the 
data statements in lines 8600-8625, the sprite number at
tribute" of the first sprite is zero (sprite tO times~). 
The second sprite in the list is sprit: f1! so the "spri~e 
number attribute" must be 4. The next sprite number attri
bute" is 12 etc. 

The last attribute determines the color of the sprite. 
Unfortunately, the colors do not correspond directly to the 
color-numbers used in BASIC. 

~ W2£ Attribute ~ 

Attribute I Color 
0 transparent 
1 black 

Attribute I Color 
8 med. red 
9 lt. red/peach 

2 med. green 
l l t. green 
4 dk. blue 

10 dk yellow 
11 lt yellow 
12 dk. green 

5 lt. blue 
6 dk. red/orange 

11 magenta 
14 white 

7 cyan 15 grey 



Notice in the program that line 8630 sets the variable 
sa. (for sprite attri~utes) to 29500, and then the sprite at
tributes are POKEd into memory starting at this location. 
We now have our "sprite attribute table" in place. Remember 
also that lines 8630-8660 are set up so that in the program 
we can use GOSUB 8630 to set all the sprite attributes to 
their ~nitial state--with all of them hidden off the screen . 
The main way we do this is in line 280--in the input section 
of the program. This line restores the screen to text so 
if there is a picture there it will be erased. Just b~fore 
it does this, it reinitializes all the sprite attributes and 
hides the sprites off the screen. lf ve did not do this 
the next time we draw a scene, the old sprites would be vis ~ 
ible for an instant before we draw the new scene. 

You will also notice that line 280 includes CALL sr. 
This means to call the "sprite routine", which we will dis 
cuss in a moment. 

Placing l.h.t sprites in. l ~· 
We are finally ready to put sprites in our picture. We 

can n~w ret~rn to line 6250 in the "framework program". Up 
t~ this p~int, . we had used H_PLOT to outline our picture. 
Li~e 6250 is ~oing to POKE new numbers into the "sprite at 
tribute table at memory location 29500: then we will call 
the "sprite routine" subroutine, which will move the sprites 
around and change their colors, depending on the numbers in 
the "sprite attribute table". 

The address of the "sprite attribute table" is given to 
variable sa (for sprite attribute). Thus, in line 6250, we 
see the command 

POKE sa,95: poke sa+1, 160 
Let's understand these two POKEs before looking at the 

r~st of this line. POKE sa,95 puts the number 95 into the 
first location in the sprite attribute table. This will 
then become the vertical coordinate of the first sprite. 
PO~E s~+1, 160 changes the second number in the table, 
which is the horizontal coordinate of the first sprite (re
memb~r that the first sprite is tO). (Later, in line 6270, 
we will CALL sr, and sprite tO will move onto the screen to 
become the bottom of the guard house). 

The next POKE sa•3, 14 changes the color of this sprite 
to vhite, vhich is the color ve vant for the guard house 
Notice that ve skipped one number in order to set the color: 
ln each set of four attributes, the first tvo are always the 
107ation coordinates, the third is the sprite number (multi
plied by 4 if you are using 16x16 sprites) vhich you never 
change, and the fourth is the color number. Since sprite to 

45 

is used for many different purposes , we vill have to change 
its color each time , depending on vhat it is supposed to be 
in the picture. 

The next POKE sa+ 16, 79 and POKE sa+ 17 , 160 sets new 
coordinates for sprite I t. How do we know that these are 
the coordinates for sprite 14? Simply by mutliplying the 
sprite number by t. Then this number and the next one are 
the location coordinates . ln this case we don't have to 
change the color number, because we set the color of sprite 
It to white vhen we initialized the sprite attributes. 

After lines 6250 - 6265 POKE in all the coordinates and 
new colors wanted, line 6270 finishes the picture by CALL 
sr, the sprite routine. 

Anjmptjng ~ sprites 

ln our example scene, line 6275 checks to see it the 
guard has been "disabled". 11 he has, nothing further hap
pens (IF 1(45)•1). Hovever, ii he is in his "normal" state 
(f(t5)•0), then ve have to animate the picture, to show that 
something fishy is going on in the guard house. The anima 
tion shows the woman standing up to look out the window, 
quickly hiding and then looking out again before hiding for 
good. Very suspicious. 

Lines 6280 - 6295 animate the woman. Line 6280 sets up a 
FOR NEXT loop, so she will go through the movements twice. 
Then it sets up a FOR NEXT loop that will automatically 
change the vertical coordinates for the "hair" and "face" 
sprites that make up the woman. This loop goes from 95 to 
79 in steps of - 3 . 

In line 6286 we POKE sa•52, Land POKE sa+56, L :then 
we call the sprite rout i ne: then we stall briefly to smooth 
out the movement. Thus , the f i rst time through, L will 
equal 95 and both the "hair " and "face" will still be hid 
den . The second time through this FOR NEXT loop, L will be 
3 less, that is : 92. Then the vertical coordinates ol the 
"hair" and "face" sprites will be l higher,and the woman 
will start to rise i n the window. 

As soon as the loop finishes a second one starts, with 
the woman hidden again, so it looks like she quickly ducked 
down. 

Line 6283 i s s i mply included to put in a delay when she 
is hidden . 

Line 6295 returns her to the hidden position before the 
RETURN from this graphics routine . 

~general princjple : . . 
Bascially , then, animation is easy; it is just tedious , 

because you have to kee~ changing various coordinates and 
then CALLing the sr routine. 



46 

Assembly lenqueqe listing for ~ control 

We have mede frequent reference to the "sprite routine" 
whic~ uses th~ spri~e ettr~but~s to move around the sprites. 
We will describe this routine in some detail. Those of you 
femilier with assembly lenguege should end up with en inti 
mate knowledge of sprite control. But even if you don't knov 
assembly lenguege, we will try to explain things so you cen 
use sprites more flexibly. 

The sprite routine consists of the numbers in the dete 
statements in lines 10010 end 10020. Lines 10030 - 10050 POKE 
these numbers into memory starting et memory location 29600 
This is why the variable sr equals 29600· whenever we CALL 
sr, this ~ou~ine is called. We will glve you en assembly 
language listing of the program with extensive comments. 

Assembly Code Decimal values from dete statements 
LD C,E2H 14, 226 
LD B, 1 6, 1 
CALL FD20 205,32,253 

****comment: these lines set the megnificetion end size 
of the sprites. The critical velue is the underlined one--in 
t~is cese 226.will ~ake the sprites 16x16 with no magnifica 
tion. Changing this number to 227 will give 16x16 with 
doubl~ megnific~tion. 224 gives 8x8 with no megnificetion. 
225 gives 8x8 with double megnificetion. 
LD A,(FC18H) 58,24,252 
LD IT,0050H 253,33, 80, 00 

****comment: this sets the number of entries to be used. 
In our examples, we heve 20 sprites of 16x16, so we have to 
use the number 80 in the underlined value here - -thet is the 
num~er of s~rites multiplied by 4. If one were using 20 8x8 
sprites, this number would simply be 20. 
LD HL,70B2H 33,178,112 

****comment: loed HL with the address of the sprite 
dete (28850 decimal). You will really need to understand as 
sembly ~engue9e to change this address, so you may just vant 
to use it as in the sample program. · 
LD DE,OOOOH 17,00,00 
. ****comment: which entry should the routine stert writ
ing to? We find it very confusing to try to change this 
value, so we elweys start with entry 10 end rewrite ell of 
the sprites every time, rather then trying to pick out just 
e few.to re~rite. The process is so fast that it makes no 
precticel di~ference to stert et entry 10 eech time. We re
commend leaving this value alone. 
CALL F02CH 205,44,253 

****comment: write these entries into VRAM (video RAM) 
LO A,(FC17H) 58,23,252 

****comment: set up teblelO--the entry point for attri
bute setting. 
LD IY,0014H 253,33, 20, 0 

47 

****comment: enter the number of sprites being used. 
Obviously the underlined number in this line would be 
changed to change the number of sprites. 
LO DE,000011 17,00,00 

****comment: entry to write to again 
LO HL,733Cll 33,60,115 

****comment: location address of the sprite attributes 
data (29500 deci111al) 
CALL FD2CH 205,44,253 

****comment: write attributes table to VRAH 
RET 201 

In the data statements in the framework program, the 
last number is 256, but this is not pert of the sprite rou
tine. It is just there to signal the end of the data. 

This should give you the information you need to add 
dramatic graphics to all of your programs. 

Problems .!!i1h ~ 

We need to warn you about two problems with smartBASIC. 
The first one seems to be a bug that appears with large pro
grams that push the limits of memory--which your program 
probably will do . In the program, the string variable m$ is 
used to give feedback to the player . Occasionally, the 
first several letters of mS will be skipped and random let
ters added on to the end . We can find no way around this, 
and just warn the player to simply try the command again. 

The second problem can be a real nuisance. For reasons 
we will never understand, each time a program is LOADed from 
tape or disk, BASIC adds a space immediately after each DATA 
statement and each REH statement. If you then make changes 
to the program and SAVE the modified version--as you often 
will when you develop a program- -the extra spaces are also 
SAVEd. The next time you LOAD the program, pnother space 
will be added . In a program with •any DATA statements, sev 
eral SAVEs and LOADS can waste a lot of memory, and adven 
ture games usually have little memory to spare. We find it 
necessary, every now and then, to list each DATA line and 
edit it. To do this, move the cursor under the line number, 
erase the " DATA " with the space bar, move the cursor along 
until it is five spaces from the actual data, and type i n a 
new DATA command . 

Another problem is not a shortcoming of BASIC, but i t 
can be the source of a hard-to-find bug. At the end of li ne 
160 we add one space to q$, which is the player's input . we 
put the space at the end of q$ because later the parser 
won't be able to tell the difference between "book" and 
"bookcase". In the vocabulary, book is listed with a space 
at each end: 



48 

" book Nov it won't be confused with codebook or 
bookcase, as long as there is a space at the end of the 
player's input like "read book ". However, now ve have a 
problem to watch for in line 2470, where ve want to know if 
the player said "take pictures". We must say 

if qS•"take pictures " then mS•"using what?" 
being careful to include the space at the end of "take pic 
tures", because qS vill have a space there and BASIC is 
very fussy. When you ask if qS equals something it must be 
exactly like qS. ' 

BOMB SQUAD 

In this game, you have been appointed to find and de
fuse three bombs that have been placed in the embassy of 
tiny Lunaria, the only country with large known reserves of 
kryptonite. As with most adventure games, you will be en
tering two word English commands to find your way around the 
embassy, to gather whatever supplies you might need, and to 
deal with any situation a good intelligence/explosives ex 
pert might meet. 

You can move around any of the four directions, N, S, 
W, or E-- if there is a visible exit available. You can do 
this either by typing In a command like "go south" or "walk 
east" or, to save time and typing, you can simply enter one 
of the letters N, S, W, or E. These one-letter commands must 
be In upper case letters. 

The computer will describe your location and what you 
~an see at each turn. You might try to accumulate objects 
for later use, but there is a limit to what you can carry. 
If you leave something in a room, it will be there waiting 
for you when you return. 

If you try to do something, and the computer tells you 
that you can't do that, try a synonym. Remember that each 
command you enter should include exactly two words --a verb 
and a noun (with the exception of the one - word direction 
commands or "save", "load", "help", or "carrying?". I 

Unlike most adventure games, Bomb Squad puts you under 
some time pressure. If you don't find the bombs fast 
enough, they will start exploding one by one . Even if this 
happens, though, remember what you learned from your experi 
ences, so next time you will have a better chance of finding 
all three bombs. 

As a general strategy, it is essential to draw a map of 
your searches as you go. 

~ and loading. 
If you are in the middle of a game and have to stop, 

you can enter the one word "SAVE" (be sure there is a tape 
or disk in place) and your current position will be SAVEd as 
a file named "bombgame". When you want to resume the game, 
LOAD the program as usual, RUN it, and then enter the one 
word command "load" . This way, you don ' t have to start over 
from the beginning of the game. 

You may also want to SAVE the game occasionally as you 
play, so if you get killed or get into a hopeless situation, 
you won't have to start over. 

- 49 -



50 

!! .!2.Y.g in BASIC. _ 
Occas i onally , you might read a sentence wi t h part of 

the front cut off and gibberish at the end. This seems to 
be a string handling bug in BASIC . Just try your command 
again if you can't figure out what the feedback sentence 
means. 

Graphics clues. 
Some of the scenes are presented graphically, so be 

sure you study the scene and the action in the scene to help 
you figure out the best course of action. 

Getting ~ in the game. 
If you need to know what you are carrying, simply enter 

the word "carrying? ", and the program will l i st your posses 
sions. Although i t i s considered bad form, you can even ask 
for a list of the words that t he game unders t ands by enter -
ing the one - word command " help". It's bad form because it 
makes the game too much easier, but if you really need to , 
far be it from us to make you feel guilty -- just because you 
lack character. 

!! ~ warning. 
It is possible to survive some of the explosions if you 

don't find certain bombs in time --but it is also po~sible 
that you might be in the same room at the very moment one 
goes off. In that unlkely event , there i s nothing to be 
done but start the game again. 




